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CHAPTER - IV. 

EFFECT OF LONGITUDINAL INERTIA AND OP SHEAR DEFORMATION OH THE 

TORSIONAL FREQUENCIES AND NORMAL MODES OF SHORT WIDE-FLANGED 

THIN-WALLED BEAMS OF OPEN SECTION? 

4.1. INTRODUCTION: 

In the analytical studies presented in Chapters II and 

III, the problems are formulated utilizing the Timoshenko tor¬ 

sion theory (*?§) and, the effects of longitudinal inertial and 

shear deformation are neglected assuming the beam to be lengthy 

compared to the cross sectional dimensions. But the corrections 

due to longitudinal inertia and shear deformation may be of im¬ 

portance if the effects of cross sectional dimensions on the 

frequencies of torsional vibration are desired. 

Timoshenko torsion theory, though intended to be an im¬ 

provement over the classical Saint-Venant torsion theory, suffers 

from the defect that while dispersive in character, very short 

wavelengths are propagated with infinite velocities. Thus, this 

improved theory is limited in its description of high-frequency 

(short-wavelength) vibrations and, because it contains no delay 

tine (infinite velocities), it is not suited for problems invol¬ 

ving the response to sharp transients. So muclu-ao, Timoshenko 

torsion theory cannot be justified for short wide-flanged beams 

* Results from this Chapter were published by the author, K.V.Appa- 
rao and P.K.Sarma in May, 1974 issue of the Journal of the Aero¬ 
nautical Society of India, see Ref.(/y^ ). 
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and higher modes of vibration. 

»,4;ra,/oq. 
Though thero exists some studies (t ,3 ,-3) on free torsional 

vibrations of beams of open section including second order ef¬ 

fects such as longitudinal inertia, shear deformation and shear 

lag, solutions were given only for the simple cage of a simply 

supported beam. Stating that the frequency equations for other 

boundary conditions are highly transcendental in nature, their 

solutions were not attempted. The effects of longitudinal iner¬ 

tia and shear deformation on torsional frequencies for various 

boundary conditions of short wide-flanged thin-walled beams of 

open section were not yet fullj analyzed. Further, it is observed 

that the torsional frequency values for Indian standard wide- 
ovClcf av>m 

flanged I-beams are not mate availableAin the literature., 

The present chapter therefore deals with exact and app¬ 

roximate analytical solutions of torsional vibrations of short 

wide-flanged thin-walled beams of open section, for which the 

shear center and centroid coincide, including the effects of lon¬ 

gitudinal inertia and shear deformation. The governing equations 

of motion are desired using Hamilton's principle. The method of 

solution used by Huang ( 69 ) in the analysis of Timoshenko beam 

equations in flexural vibrations, is applied to the coupled 

equations of motion to derive a clear and neat set of frequency 

and normal mode equations for six common types of simple and 

finite beams. Solutions are obtained for two complete differen¬ 

tial equations in angle of twist and warping angle respectively. 

~'~1 



The constants in these solutions are related by iuiy one 

of the original ooupled equations from which the two complete 

equations are derived. The advantage of this method is that 

the boundary conditions prescribed are homogeneous and the ana¬ 

lysis becomes quite simple. The expressions for orthogonality 

and normalizing conditions for the principal normal modes, which 

are useful in solving forced vibration problems and, which in¬ 

clude both the angle of twist and warping angle are also obtained 

in this Chapter for both the general case and for beams with va¬ 

rious simple end conditions. 

uJf>- *1 a ve 
To faoilitate^the designers, extensive design data h* pre¬ 

sented for the torsional frequencies of Wide-flanged doubly sym¬ 

metric I-beams with various types of end conditions* The results 

for the first four modes of vibration for various types of end 

conditions are presented in tabular form suitable for design, use* 

To supplement the exact solutions, with approximate analy¬ 

tical solutions, the problem is also solved for some typical 

boundary conditions utilizing the Galerkin’s technique. Depen¬ 

ding upon the assumed functions satisfying the prescribed boun¬ 

dary conditions of the beam, Galerkin's technique is found to 

give nearly accurate results* 
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4.2. BAS10 ASSUMPTIONS: 

The problems investigated in this Chapter are restricted 

to the following assumptions: 

a) The material of the beam is homogeneous, isotropic and 

obeys Hooke’s law. ' 

b) By symmetry, the cross sections rotate with respect 

to oentroidal axis, the warping is confined to flanges only. 

o) Plane croon neotioun of different straight pioooo re¬ 

main plane, and warping accross the thickness of these cross sec¬ 

tions is neglected. 

d) The distortion of the wab out of its plane is assumed 

negligible. 

e) Bending of the flanges does not produce any additional 

shear stresses on the flange-web section. 

f) No internal and external, damping forces exist. 

g) The deformations are small compared with the cross¬ 

sectional dimensions of the beam in the linearized problem. 

4.3. DERIVATION OF DIFFERENTIAL EQUATIONS OP MOTION: 

Pigs.4.1 and 4.2 show a differential element of length 

*dz of a wide-flanged I-beam undergoing torsion. The strain energy 

at any instant t in a beam of length L due to Saint-Venant 

torsion is (See Eq. 2.2a) 

L 2 
(4.1) 

_ 
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Accompanying the rotation, is a warping of the oroao- 

section which is assumed constant in each piece of the cross- 

section having a moment M. Thus for the wide-flanged section, 

warping is confined to flanges alone and its angle of rotation 

denoted by iy (z,t); see Pigs.4.1 and 4.2. 

Pig.4,2 (b) shows an element of the top flange. If w is 

the z-displaceraent of a point in the top flange, then 

(4.2) w = (x, z, t) = - x iy 

and the z-component of strain is given by 

(4.3) 

The section is thin, so we assume o*x= Cy- 0, and Hooke's law 

gives cr = E6^, where E is Young's modulus. Moment M due to 

stresses a~z is 

(4.4) 

It is easily verified that stresses cgive rise to no 

net axial force, and moment M in the top flange and -M in the 

bottom flange cancel so that no net moment My exists on the cross- 

section. If U is the strain energy of the two flanges due to the 

warping normal strain ( 9<3 ) f then 

(4.5) 

If 0 , is the shear strain at the center of the flange 
sh 

i 
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x = 0, then by definition 

l 

(4.6) 

where u is the x-displacement of the top flange center line. 

Eq.(4.6) introduces the effect of transverse shear deformation 

used for bars by Timoshenko (lo)) and later applied to plates 

( *7 )♦ Using Hooke's law for shear, the value of 6^ given by 

Eq.(4.6) is assumed proportional to the total shear force Q, 

-Q=KAfG6sh (4.7) 

where Af is the cross sectional area of the flange, and K* is 

the transverse shear coefficient. The equal and opposite shear 

forces Q, a distance h apart in the top and bottom flanges, give 

rise to a torque-due to warping, Tw, given by 

Tw = - Qh = K AfGh(| -g| -Ip) (4.8) 

in which displacement compatibility at the web-flange joint 

u = (h/2) 0 (4.9) 

has been used to eliminate u in Eq.(4.6). 

The total torsional couple, T^, on the cross section is 

given from Eqs.(2.2a) and (4.8) as 

v v v aos t+ KV*><! t. -v) (4.10) 

The Btrain. energy due to shear deformation of the two 

flanges, U3, is 

' ■-> 

• h a?*g..vsi 
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v £ {2(- «> y> -1 {2itV<i H-vf «• (4.11) 

The total strain energy, U, at any instant t is given 

from Eqs.(4.1), (4.5) and (4.1l) by 

u - V V VI { «Vlf nttGpf* “V(i ^ ■¥> 
a^s, 

dz (4.12^ 

The total kinetic energy at time t is 

.2 _ 
i=i/ * 2i fV# + 2^If dz (4.13) 

where the first term is the Kinetic energy of torsional rotation 

0 and the second term is that due to longitudinal (warping) dis¬ 

placements of the two flanges. 

Since our object here is to study the free vibrations of 

the beam, the potential energy, ty/, of the external force system 

is taken as zero. If TKand U from Eqs. (4.12) and (4.13) are sub* 

stituted into the Hamilton integral given by Eq.(2.l), and varia¬ 

tions taken, and after integrating the first two terms by parts 

with respect to t and next three with respect^z, we obtain: 

£ l [H $+k'vh(i B ^ B} * 
i 

+{mf -2 PIf 2 KV(t fz -v>} 
Xi *** 

+ / (nM 60 + 2 Pi ±_ Zv) 
o P dt 1 dt 

dz 
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= o 

(4.14) 
S 

Assuming that the values of $ and^ are given at the two 

fixed instants, the second integral vanishes. If the boundary 

conditions are such that the third integral also vanishes, then 

we obtain the following two coupled equations of motion: 

«>B ft * *v»<i H - —> -<%, - o 8 3z2 f 2 az2 az p at2 

and 

EIf Tz + KV(i -Hf = o 
1 3z2 f 2 az f at2 

4.4.(a) NATURAL BOUNDARY CONDITIONS: 

(4.15) 

(4.16) 

In deriving the coupled equations (4.15) and (4.16) from 

(4.14) it was assumed that the expression 

GO & + k'A„Gh(“ -p) 
8 3z 1 2 az 

¥ + ggl- £2. 6^ 
3z 

vanishes at the ends z=0 and z=L. This condition is satisfied 

if at the two ends> 

and 

GO ^ + v*« m, rh 
3 a, 

d0 
K'A^.Gh(S — -ty) 

f 2 
9z 

¥ = 0, (4.17) 

sy = o. 
9z 

(4.18) 
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Egns.(4.17) and (4.18) give tho natural boundary oonditionB fof 

the finite bar, and are aatlBfied if the end conditions are taken 

as: 

1. 0 0 and 
ajp 
dz 

0 (4.19) 

these oonditiona imply no end rotation and aero bending moment 

in the flange-ends. In this case, the web is constrained against 

rotation while the flanges are froo to warp. This is the case 
1 

of a ''Simply Supported ond'1. 

2. 0 = 0 and^P = 0 (4.20) 

These conditions imply constraint against end rotation as well as 

end warping, and hence give no end deformation. These conditions 

define a 1 * "built-in end1 * . 

3. - 0 and G0S % ♦ *>!,(§ $ -*>) - 0 U.21 

These conditions imply zero bending moment in the flange ends and 

no torque at the end crons neotion. Tho end is thus free from 

traotlona and the oomUtlmui oorreeoond to n "free end". 

4. y>. 0, 80s-J| + t,lJSh(|'S|-l>')-0 

or equivalently, 

ip = o, $ = 0 (4-82: 

The latter conditions imply no warping and zero shear forces in 
# 

the end flanges. 

of 

These conditions are useful for finding symmetric modes 

vibration in simply supported, fixed-fixed, and free-free beam 
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(*>) IIME-IIBPENDBNT boundary CONDITIONS: 

The homogeneous boundary conditions discussed above 

give the free vibrations of beams. Bor forced vibrations pro¬ 

duced by the motion of boundaries, appropriate time dependent 

end conditions are given by prescribing at each end one member 

of each of the products: 

GOs if + K'VJh(| -gf -Ip) J&0 and EIf 1 \p 

or equivalently of: 

Tt60 and M67p. 

Of the many conditions thus obtained, the following are of more 

theoretical interest; 

1« torque prescribed, bending moment M ■ 0 orf ■ 0, 

^ °r prescribed, bending moment M = 0 or^* = 0, 

3. ' bending moment M prescribed, torque T^= 0 or= 0, 

4* ^ or ^prescribed, torque T^ or 0 = 0. 

In the case of semi-infinite beams, conditions need be 

prescribed at one end since all physical quantities at any ins¬ 

tant are zero at the far end. 

4.5.1. SINGLE EQUATION IN ANGLE OB Iff1ST: 

Eliminatingbetween the coupled equations (4.15)and 

(4.16), a single equation of motion in angle of twist 0 may be 

obtained as: 
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KAj 
+ EC 

W 

, c3|eif 

k'AjG k'j^ 

a40 

az2at2 

- GO i± + 
s a-8 

P 1L ®fg 
at2 K Af G 

0 (4.23) 

Eq.(4.23) is a linear partial differential equation of 

fourth order, and is of the same form as the Timoshenko beam 

equation for flexural vibrations ()o|), under an axial load P 

which introduces an additional term - P —£ (as spring restoring 
\ 9z2 

force; in the Timoshenko equation. It is clear that the term 

q2<v d^ 

- GO —s is analogous to the term - ^ . 
8 az2 

4.5.2. ANALYSIS OP VARIOUS TERMS: 

i) Letting Cw =(>If = 0 and K*- Eq.(4.23) reduces to: 

GO £2. 
3z2 

Pi . ifg-o 
p at2 

(4.24) 

This equation represents Saint Venant torsion theory for slender 

beams and does not include warping of the cross section, shear 

deformation and longitudinal inertia effects. It is given in 

Love ( 76 ) and is discussed by Gere (32.). 

Pi) Cw = 0 and K •* «>, then Eq.(4.23) becomes: 

GC 
32gf 

9Z2 

(’Ifh< *5t 

9z2dt2 
- f I m. 

at2 
(4.26) 
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The seoond term represents Love’s corrections(7&) for 

the longitudinal inertia added to l?q.(4.S4) and corresponds to 

Rayleigh's oorrootlon(/oo), for latoral inertia in the elementary 

theory for longitudinal vibrations. 

iii) If ^>If= 0 K - » , Eq.(4.23) 

EC 
w % - oo + 

az4 3 az2 
p I 

a2gf 
p at2 

reduces to: 

0 (4.26) 

This equation represents Timoshenko’s torsion theory which in¬ 

cludes the effect of warping of the cross-section and has been 

treated in detail by Gere(i2-). 

Lv) If K -* Eq.(4.23) reduces to: 

EC 
w 

PI/ a40 

9z 
- GO 

ez2.at2 3 a 
+fi ifg , o 

P at£ 
(4.27) 

This equation represents Love's correction added to Timoshenko's 

torsion theory and corresponds to Rayleigh's correction of rotary 

inertia(>o°), in the Bernoulli-Euler beam theory. 

y) If f If= 0, then Eq.(4.23) is given as: 

EI»C 
(-M 
K AjG 

»<Vf tto 
k'a£g az2at8 

GO if* 
az2 

+ Pi if* _ 
at2 " 

0 (4.28) 

This equation represents the effect of shear deformation added 

to Timoshenko1q torsion theory. 

vi) The part of Eq.(4.gg) given by: 

.Vi «iu+ ata 
k' h az2at2 K! A 
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arisaB from the ooupled interaction of torsional deformation 

with the bending effeots of shear deformation and longitudinal 

inertia. The —-4 term is responsible for introducing at high 
dt4 

frequencies and short wave lengths, a new mode of wave transmis¬ 

sion in long bars, and a completely new spectrum of natural fre¬ 

quencies in finite bars. 

4.6. hOH-DIMEMSIONALIZATIOH AND GENERAL SOLUTION: 

Eliminating 0 in Eqs.(4.15) and (4.16) we obtain the 

oomplete differential equation in warping angle ipaai 

K Af w az4 K AfG K Af 2 dz^cJt^ 

•%+PT =0 - GC 
3 a_2 az* p at2 k lg at' 

Let 

0 = 0 

= V e^n6 

Z = z/L 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

where 0 is the normal function of 0, Ip the normal function of 

'Zp, Z the non-dimen3ional length of beam, i = Y^T, pnthe natural 

frequency of vibration. 

Substituting Eqs.(4.30) to (4.32) and omitting the fac¬ 

tor eipn^, Eqs.(4.15), (4.16), (4.23) and (4.29) are reduced to: 
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_ I t _ ' _ I 

(s2K2+ Jj) 0 + X2s20 - (2L/h)^ = 0 (4.33) 

s2v”- (l->fs2d2)!p + (h/2L) <0* = 0 (4.34) 

(sVf 1)0 V+X2(a2d2+ s2)0 s2d2)0 = 0 (4.35) 

(s2K2+1 )?/? +)v2(a2d2+ a2)?/'’ - ^(l-X202d2)'?)’ « 0 (4.36) 

where 

a2 - 1 + b2K2 - KVd2, 

s 2 ^ VM A = -e- 9 frequency parameter, 
EG 

w 

(4.37) 

(4.38) 

0 I^GC 
Kr = -S 9 warping parameter, 

ECw 

(4.39) 

| -y 

2 ^f^1 
d = 9 lo^^U(^nal inertia parameter, (4.40) 

• 

2 EIf 
s = , 0 t shear deformation parameter 

K A~GI< 

\ 

• (4.41) 

and the primes for 0 and represent differentiation with res¬ 

pect to Z. 

The general solutions of Eqs.(4.35) and (4.36) can be 

found as: 

0 = cosh XoCgZ + Ag sinh^oCgZ + A3 cos>\PgZ + A4 sin^PgZ (4.42) 

— * • f t 

Y ~ A± sinh^agZ + AgCOshXotgZ + Agsin^ PgZ + A4cos/\ PgZ (4.43) 

v " "" »>,—^77r- 
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where 

1 

Pg = f2(s2K2+ lW2 
% (a2d2+ s2)+[(a2d2-a2)2+ 4/^2| 

1/2 1/2 

(4.44) 

and 

[(aV-s2/* 4A211/2 > (aW) 

is assumed. 

In oass 

L(a2d2- S2)2. d/)2]172 < (a2d2+ a2) 

we write 

= 

2 f2(s2K2+ 1)^ 

/ 2.2. 2\ 
(ad + s ; - (a2d2- s2) + 4/^ 

nl/2 1/2 

= 1 a„ 
i > , 2 

(4.46) 

Then Eqs.(4.42) and (4.43) are replaced hy 

0 = A^os )\ocgZ + 1 AgSin)\agZ + AgCOsvN PgZ + A^sin^f^2 (4.46) 

^ = i A^sin^agZ + AgCOs>\<XgZ + A^sin^pgZ + A4cos>\ PgZ (4.47) 

Solutions of Eqs.(4.42) and (4.43) or (4.46) and (4.47) are natu¬ 

rally the solutions of the original coupled equations (4.15) and 

(4.16). 

Only one half of the constants in Eqs.(4.42) and (4.43) 

are independent. They are related hy Eqs.(4.15) or (4.16) as 

followsi 



^ = rSr i - 

' A0 

A„ = 

Xa, 

21 

>^»! ♦ «*> u 
t -* 

[1 ->V(«| j ^ 

3 ~ 1 +AV(s* 

or 

- {a -g(<Ac2-t l) +»s 

a2 

4 5E 

P|CaV+ l) . a2 

4’7* EQUATIONS 
amoTims. 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

(4.58) 

(4.53) 

(4.54) 

(4.55) 

111 section 4.4(a) „o4. 

°r • * •«** - «- 
^e-span bea.,3 oan be 8 ” -y tlPes „t 

“*—*««■ .. & *— « -on^naio^ 
tt° b0UMa^ ooMltloa 

s can be written as: 
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1. Simple Support: 

0 a 0, ^ => 0 (4.fed) 

»• jflMfl SHpp,9Tr.t» 

? ■ 0, 2? - 0 (4.57) 

3. Free End: 

_ ! _ » 

V - 0, (s2K2+l)0- (2L/h)^P=0 (4.58) 

4 

* 

The application of appropriate boundary conditions (4.56) 

to (4.58) and, relations of integration constants (4.48) to 

(4.55), to equations (4.42) and (4.43) yields for each type of 

beam a^at of four constants A^ to with or without primes. 

In order that the solutions other than zero may exist the deter- 

1 minant of the coefficients of A's must bo equal to zero. This 

leadB to the frequency equations in each case and the roots of 

these frequency equation, ^±, i =l,2,3,...n, give the eigen va¬ 

lues of the problem. The corresponding modal functions, 0^ and 

can be obtained accordingly. 

i <- 

i. 

4.7.1. SIMPLY SUPPORTED BEAM: 

The boundary conditions for a beam simply supported at 

both ends are: 

m\ 
0 = ft = 0 at Z = 0 

and 
- 
0 = =0 at Z = 1 

* 
• N 
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For the boundary conditions at Z = 6, Eos.(d.42} and (4.43) 

give s 

W=0’ 

[a|(a2K2+ 1) + s2jA1-j>i~(s2K2+ 1)- s2]^ •= 0 

Since the secular determinant, ie., (s2K2+ l)(a|+p|) £ 0, there- ' 

fore it follows that: A^ = = 0. (4.59) 
’ I 

For the second pair of conditions at Z = 1, Eqs.(4.42) 

and (4.43) give: 

Ag sinh X (Xg**- A4 X Pg — 0, 

and 

[a|(s2K2+ 1)+ s2]A2sinhX <*2-^2(s2K2+ l)- s2]A4sin XPg= 0. 

.. (4.60) 

For a non-trivial solution, the secular determinant must 

vanish. This gives the characteresticequation: 

(s2K2+ l)(oc2 + P2) sihh^ctg sin^Pg = 0 

Since (s K + l)(a2 + (32) £ 0, the possible solutions are: 

(4.61) 

X«g = 0, = 0; 

X ag =0, t 0; 

A a2 / 0, = 0; 

>\a2 / 0, ^2 = nit, n=l ,2,3 

The solution^ a2=0, X (3^= 0 is not valid and the cases X a ^ 0, 

APg = 0 andVg = 0, Ap2 ^ 0, by Eq.(4.44) implyX 2= 0 and 
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= l/s2d^ Respectively. Using the Eqs.(4.42) and (4.43) and 

following the above procedure for>\2 = 0, and for = l/s^d^, 

we can see that the former case leads to a trivial solution and 

the latter to: 

0 = 0, Zp - constant (4.62) 

The critical frequency /\% = l/s^d^ thus represents the first 

thickness shear mode of the flanges (loo). The existence of this 

rhode for the simply supported case of Timoshenko beam in flexu¬ 

ral vibrations has been demonstrated by Trail-Nash and Collar (3 ). 

It is overlooked by Anderson ( 3) and neglected by Dolph (3.) by 

a wrong interpretation of the, associate results. 

The last case• 

^otg^O, >%P2=nn, n=l ,2,3,... (4.63) 

leads to the main solution of the problem, Letting >pp2= -n2rc2 

in Eq.(4.44), the frequency equation in /\2 is obtained as: 

s2d2X4-\2|l + n27i2(s2+d2+a2d2K2>J+ n2it2|n27t2(s2K2+ l)+ K2J= 0 (4.64) 

This equation gives two real positive roots: 

=~2l2 [l1 * n2u2(s24tl2+32d2K2)] 
d S d 

+ (-l): 
,nw 

1+ n27t2(s2-d2-s2d2K2)j+ 4n27t2d2 (• iV/z (4.65) 

This frequency equation (4.65) in/\2, has an infinite 

number of roots which in general represent two coupled frequency 

\ 
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apeotra. It may noted that the roots >.? is always > l/s2d2. 

The roots greater than the critical value are also admissible 

since the same frequency equation is obtained for the case 

g / 2 2 cm 
A > 1/s d . Thus, both the roots^X4.65) are admitted and con¬ 

stitute the two uncoupled frequency spectra. 
t 

Using (4.63) and (4.60) one gets : 

= °- (4.66) 

The modal functions are obtained from Eqs.(4.42) and (4.43) with 
t 

- A s given by (4.59) and (4.66). These are given as: 

4n " sin n7tZ 

2nuL nVCsVf l)->8 s2 cos nuZ 

(4.67) 

(4.68) 

where being given by (4.65). 

The second spectrum appears at higher frequencies, grea¬ 

ter than the critical frequency >\ given by 
c 

^ c = l/s2d2 (4.69) 

and is due to interaction between shear deformation and longitu¬ 

dinal inertia. Eq.(4.69) therefore shows the thickness shear 

nature of the critical frequency while Eq.(4.65) shows the two 

frequency spectra, uncoupled in the present case. 

The classical Timoshenko torsion theory provides only 

one set of frequency spectrum, while the present analysis provides 
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two froquenoy spectra. The eigen values^ of the first set of 

frequency spectrum cover the whole range from zero to infinity, 

but those of the second set range from the critical frequency 

given by equation (4,69) to infinity. 

For this case of a simply supported beam, Aggarwal (3), 

Tso (/o^) and Krishna Murty and Joga Rao (TO) also illustrated 

two sets of frequency spectra. It is to be mentioned here that 

for the range of the values of the dimensionless parameters 

covered in this Chapter, A is less than >\ . 

and, the characterestic frequency equation (4.6l) transforms to: 

sin X otg sin X Pg = 0 (4.70) 

where is given by Eq.(4.45). 

Hence, in case there is any extension from there on for 
\ p p p 
A beyond Xc ie., A s d > 1, care should be taken to account 

for the frequencies of the second spectrum which can be obtained 

from Eq.(4.70). 

By putting s^= d2= 0 in Eq.(4.64), the equation for the 

frequency parameter X » neglecting the effects of shear deformation 

and longitudinal inertia, can be obtained as: 

^ = n2n2 (n2it2+ K2) (4.71) 

which is the same as that derived by Gere (32) utilizing Timoshenko 

torsion theory. 

For the case, X > <XyJ» it is convenient to use ctg 
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4.7.2. FIXKTj-i'ITY.D BKflM: 

In the oaso of a beam which is built-in rigidly at both 

ends, the boundary conditions are: 

and 

0 = V = 0 at Z = 0, 

0 = ^ = 0 at Z = 1. 

Applying the above boundary conditions to the general solutions, 

Eqs.(4.42) and (4.43), the frequency equation, for the first set 

(A < XQ), can be obtained as: 

2-2 cosh ^ ag cos A Pg ' 

X \SZ s2(s2-a2d2)+(3s2-a2d2)] 
+ Sl"»A«2sinA.?2 = 0 (4.72) 

The frequency equation for the second set (A>A ) is: 

2-2 cos>»ag cos A Pg 

rxV(.w).b»Vd2)] 
+ (AVd2-!)1^ (s¥t 1)V8 SinA“8 Sln>S = 0 

(4.73) 

The modal functions for the first set are given by: 

0 = B(cosh>\agZ + 6 r[^Q sinhA agZ- cos^ PgZ+^sinA PgZ) (4.74) 

i 

If* = C(cosh 'AagZ+/^[-sixih AagZ-cos /\PgZ+^^3inA Pgz) (4.75) 

1 
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^ - , i .fs-,;,}.;/. 
| , - .. • ,-■>>. ■ 

!. \ ' . .. 

I''''.' 

■ ■ 
where ■ <r.x\ . ' ■ • * 

;r>1 6 = a /P 
. ailx V i>'<- • 2! r2 

P*(s2K2+l)- g2 cc2(s2K2+ l) + a2d2 
0 a —1 .. 

•'.***'. 

•;i 

■■ 'S.Jjfti 

a2^2^* l)+ s2 P2(e2K2-H l)- a2d 2,2 

- _,p: 

V ty 

: .■ ■ • i 
. • 

! ■ -f i. :. 
P2(s2K2+ l)- g2 oc2(s2K2+ l)+ a2a2 

». } v,, 

Pg(s2K2+ l)- a2d2 a|(s2K2+ l)+ g2 

■t 
■U: 

* I < vk * 'i 

n i 

/*i 

- cosh>\a2+ cog A Pg 

^0 ginh /\ag- gin X |3g 

- cogh^\ag+ cog X (3^ 

(l/6e)sinh Aag+ ginA.Pg 

The modal functiong for the gecond get are: 

0 =B(cogXagZ- /|g0 sinAagZ- cos > pgZ+ ^ gsin >\ Pgz) 

■ 

0(oog>a'z+^ sin)\a'z- cos >\ |3 Z+/--Lgin AppZ) 

where 
■ ; 

6 0 

6 =a2/|32 

cog 7)0Cp- cog A p 
*1 o ^ T1-—\- 

<S 0 gin ^g- gin)\p2 
f . 

ju - Z. 003^a2+ 008 

2 (l/d e)sinX,ag+ sin^ Pg 

• <- : 
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Since the coefficients in 0 and of Eqg.(4.42) and 

(4.43) are related, the constants B and C, that appear in the 

modal functions given above are connected through any one of 

the equations of (4.48) to (4.61) or (4.68Ho (4.55). 

4*7,3, —E-M FIXEI) AT ONE END AMD SIMPLY SUPPORTED AT THE O'TRRT?« 

With the end Z = 0, taken as built-in end, and the end 

Z = 1 as the simply supported end, the boundary conditions are: 

0 = V = 0 at Z=0 

and ... 
— — * 

0 = Ip =0 at Z = 1. 

The frequency equation obtained from applying the above 

boundary condition to the general solutions, EqS.(4.42) and (4.43), 

for the first set (/^</^c) is given by: \ 

tan^p2 = o (4.85) 

The frequency equation for the second set (> > A ) is: 

6*0 tanh>;+tan>P2 =0 (4.86) 

The modal functions for the first set are given by: 

0 = B(coshAasZ- ooth^a,, sinh^agZ- cos >, 

+ cot>P2 sin^PgZ) (4.87) 

^ = C(cosh>,a2Z+/^ gi^XagZ- cos >PgZ+/*3 sinA Pgz) 
(4.88) 
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f ' V 

. 

where 

- (S sinh \ a0+ sinXpQ) 
M = -£- 

(l/9)coshA 0Cg+ cos A Pg) 
(4.89! 

The modal functions for the second set are: 

0 = B(cosXctgZ- cot Xctg sin>\agZ - cos X PgZ 

+ cot XP2 sin>\P2Z) 

7p - 0(oob )s oCgZ ■7i sin XttgZ- cos XpgZ+/7 3sin X P?Z) 

where 

= 6 slnXag ~ sin>N,pg 

3 7l/e)oos >\ag+ OO0>* 

(4.90 

(4.930 

(4.92J 

4.7.4. CANTILEBER BEAM WITH ONE END FITTED ARP FB'P.^ AT THE r/PHTTR: 

For a Cantilever beam built-in rigidly at the end Z=»0 

so that warping is completely prevented, and with a free end at 

Z = 1, the boundary conditions are: 

0=V=O at Z=0, 

and 

= 0, (s2K2+ l) 0 - (2L/h)^= 0 at Z = 1. 

The frequency equation for the first set, in this case, 

can be obtained as: 

2 + [x2(a2d2- s2) + 2J cosh^ctg cos>, P£ 

(a2d2+ n2) >> _ v . 

" T^W)^2 (sV-nW2 Sinb*a2sin^2 - 0 <4* 



130 

The frequency equation for the second set is given by: 

2 + Q>\2(a2d2- s2)+ igjcos^ag cosA (3g 

. A(a2d2+ s2)_ 

(A2s2d2-i )lf2, ( s2K2+1 J1/2 
sin Aap sinA.P0 = 0 (4.94) 2 ° ’r2 

The modal functions for the first set arer 

0 = B(cosh>a2Z- 69 ^sinh AagZ-cos A PgZ+^sinA PgZ) 

.?* = C(cosh>a2Z+ J^3inh XagZ-cos APgZ+/*48in \PgZ) 

where 

l 4 - 
(l/6) sinhXgg- BinA Pg 

9 cosh X«o+ cos A (3_ 

_ (6 sinh>^a2+ sinA pg) 

(l/9)cosh >\ag+ cos APg 

The modal functions for the second set are 

0 - B(cos X<x2Z+ 6'ea5 sinVgZ- cosAPgZ + '£5sinAPgZ) (4.99) 

- C(cos AagZ - —r~sin AotgZ- cosAPpZ+/\. sinAp^z) (4.100) 
6 0 

where 

(1/6 ) sin Aa?- sinA Pp 
\ 5 = -t---§ 

e C03>\ ag+ COS A Pg 

^ _ 6 sin Aatg- sinA Pg 

(l/0) cos Aag+ cosAPp 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.101) 

(4.102) 
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CANTILEVER BEAM WITH OKB BHD SIMPLY SUPPORTED AND FREE 

AT THE OTHER: 

For a Cantilever beam simply supported at the end Z=0 ' 
and free at Z=l, the boundary conditions are: 

0 a P « 0 at Z » 0, 

and 

= o, (s2IC2+ l)0 - (2L/h) at Z = 1. 

The frequency equation for the first set, in this oase 

becomes: 

6 tanh^os-- 0 tanXp,= 0 (4.103) 

The frequency equation for the second set is given by: 

, 6 tan Aap+ 9 tan = o 

The modal functions for the f irst^are' 

(4.104j 

- = 6 oosX Pg 

cosh^a- 
sinh>\a„Z + sinX 90Z (4.105] 

£ = 3ln> 
5 sinh>ar 

coshX a„Z + cos XP0Z (4.106) 

The modal functions for the second set can be obtained 

0 = - 
6 COS APc 

cos /Sa 
T— sin Xa„Z + sinA PnZ (4.10" I 

sinA 

009 ■+ & 
^ = _ ;nr 12 v . 

(4.10SJ 
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4.7.6. BEAM WITH FREE ENDS: 

In the case of a beam which ia free at both ends, the 

boundary conditions are: 

— * __ I __ 

Y> = 0, (s2K2+ 1)0 - (2L/h) 7p= 0 at Z = 0, 

and 

V7- = °> (bV+ 1)0 - (2L/li)^.= o at Z = 1. 

The frequency equation for the first set, in this case 

can be obtained as: 

2-2 cosh>\ag cos>\P2 

X^Wts'WWSsV-B1)] 

+ —("l- AVa2)1'2 (s2k2h. i)1/s si’fl‘ "* - 0 

(4.109) 

The frequency equation for the second set is given by: 

A 

2-2 cos Aag cos >\Pg 

A [jA2a2a2(a2a2-s2)2+ (3a2a2-s2)] 

l)1'2 (A2.!)!'2—1 3ln Vln>>V 0 

(4.110) 

The modal functions for the first set can be obtained as: 

0 = B(cosh)\agZ- sinh XtgZ^cos >PgZ+(l/^ 6)sin} pgz) (4.Ill) 

^ = C(cosh>a2Z-^ sinhP>a2Z+e cos> PgZ+(lA g)sinApgZ) (4.11g) 



133 

where 
: * m 

Cfl 
oosh oos >Pg 

6 sinh^ctg- 0 gin/Pg 

l'he modal functions fox' the second set are given by: 

(4,113) 

0 = BCcos^agZ-S/^gsin >agZ+(l/0)oos ^PgZH^sinXPgZ) (4.114) 

= C(cos^agZ-(/^6/6 )sin>\ agZ+ 0 cos >\PgZ+(l//tA.6)sin>sPgZ) (4.lid 

whei-e 

cos/Sag - cos>\ Pg 

</t^6 6 sin<)\ag+ 0 sin>\Pg 
(4.116) 

4-8. ORTHOGONALITY AMD NORMALIZING CONDITIONS*’: 

In this section, the expressions for orthogonality and 

normalizing conditions for the principal normal modes 0 and Zp 

are obtained for both the general case and for beams with vari¬ 

ous simple end conditions. 

Let Eq.(4.33) be written in the form 

)\2320 = (2L/h) fy. ~ (b2V?+1)0 

for two modes m and n as, 

X s20 = (8L/h)y> - (s2K2+ 1) 0 
m 1 

_ i 

v 
_ I 

_! I 

in 

1 
X 2 SZ0 = (2L/h)fp - (sV+l) 5 

n 11 n 

(4.117) 

(4.118) 

* Results from this part of the Chapter were presented by the 
MUrrhSr^an<^ K-v:Apparao at the 16th Congress of ISTAM held at 
M.N.R.Engineering College, Allahabad, during 29th March to 
1st April, 1972. See Ref.($£). 
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Multiplying Bq.(4.117) by \ and Eq.(4.118) by Jj and 

subtracting Bq.(4.117) from Bq.(4.118), wo have! 

(An-Am) s?Vn- 4-4 4)-(sVn)(44- 4' 4) 

(4.119) 
Let Eq.(4.34) be written in the form 

X2s2d2V = ly- s2 £ ~ (h/2L) 0 

for the two modes m and n as, 

= Vm- s2fa’- (h/2L) 4 

*n s212 Vn - fn - a2 24. (h/2I)4 

(4.120) 

(4.121) 

Multiplying Eq. (4.120) by ^ and Eq. (4.121) by£m and 

subtracting Eq.(4.l20) from (4.121), we get: 

(*V^ n " «)(^a - 44,) 
_' » - _ * 1 _ 

where 

- (4s2L2/h2)(^ & - & ) 
n m m ny 

Si3 = (4L2/h2)d2 = 2IVI 
f P 

(4.122) 

(4.123) 

Combining Eqs.(4.119) and (4.122), integrating over the 

whole beam, and carrying out integration by parts for most of 

the terms, we obtain: 
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( a2)s2 / ( in+x£^m vn) dZ 
n m o 

1 
- / 

o 

— —* _» _ _ —*i 

* 

'• m 

"*n . M 

(8I/h)(^n Hm*Vn 0m)-(2lA)(% 0n+VB |#n) 

- (s2K2+l)Wn gfm- 0n0m )-(432L2/h2)(tFn Vm-VnVm ) 

(2LA)(fn Ja. ?„?;)-(.¥«)( 0n 4- 0n ?m) 

1 

dZ 

- (4s212A2 ) ( 2p - ZP ?pm) 
n m 2i m 

_ i _ 

(4.124) 

Applying end conditions of any combinations gives the 

orthogonality condition: 

/ Wjn+^\^n) dZ = 0, m ^ n (4.125) 

For m = n, the left side of the equations is identically equal 

to zero because =)\n« 

Thus the normalizing integral: 

f ( 02 +s£%P) dZ 
o 

cannot be obtained directly by putting m = n in Eq.(4.125) 

To evaluate this integral, we let 

A m = ^ (4.126) 

. ?\n = >)+ &>> (4.127) 

in which 6 A is a small variation of A » and /^n= as 6 A 

roaohes zero. Thus, we have 

lapp- 
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2 x 2 

X m = ^ ’ 

A2n - (X + 5X )2 = X2+ 2X6X 

(4.128) 

(4.129) 

in which the higher order small term in the expression of 2 is 

omitted. We algo have : 

d0 
= 0 + 

Mil 
m 

dX ' 
6 X (4.130) 

>
>

 
ft Ha 

dX 
6X (4.131) 

_ I 

_ 1 

d0 
6X = 0 + m 

d X 
(4.132) 

^n = ^m+ 

— » ' 

d$> _a . 6 x 
*X 

(4.133) 

where 

d 3 docg 3 apg 3 

dX 3X d X * 9ag dX * apg 
(4.134) 

Substituting the above relations in Eq.(4.124) we obtain: 

2 X6X s2 / (0m+H2^~m) dZ 
-2 

(2L/h)(Ha 0 - — m)-(s2K2+l)( 0 ~0 ) 

dX m ,d> m dX m dX m 

n 1 

- (4s2L2/h2) ( Ha ^ _ Ha ) 
d X m dX m' 

6 X (4.135) 

Dropping the subscript m, dividing both sides of the equation by 
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4s2L2 - d 
- (-—=-)V 

d X. 
(4.139) , 

(4) Beam fixed at one end, simply supported at the other: 

1 -2 0 -2 1 
I (0 + d??p ) az = —7r~2 
0 2 X2e2 

2L _ 
j (sZK2+1)0 - (— )%P 

&0 

d\ 

-2t.2 
Aa,^,~ d ^ V ), 2v2..sZ' ^ .AbZJj2'-' d?f! 

— <{3^+1)0 — +(-—)7p 
dX h4 d X J 2=0 

(4.140) 

(5) Cantilever beam fixed at one end, free at the other: 

f (.0 +^?^p2)dZ = 
2^s< 

- d 
0 — 

dA 

21 - 

(— )y-(g2K2+l) 0 

2 2 “ ^ 

4s L - dip 
- (-—*-)* — 

hz dX 

r 
, p p -• d0 4s2!2 d lf> 

- J(s2K2+1)0 — +(-z~)lp - 

2=i A/\ h AX z=o 

(4.141) 

(6) Cantilever.beam simply supported at one end, free at Ihe other: 

Sif+sAty) dZ =~\~2 
o 2 >2s2 

- d 
0- 

d> 

PL - _* 
(— )tfj - (s^+l) 0 
h 

4s2!2 - dtp 
- (-*-) — T - ^ 

hc d> Z=1 

0 „ 21 - 
(sV+l)^ - (h 

d0 

dX 

4s2!2 -dtp 
+ (—g—)zp —— 

h2 T d z=o 
(4.142) 

T 

‘ 
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It is also suggested that the normalizing integral can 

be approximated by discrete values of 0 and 'y along the beam. 

Expression of Normalizing condition: 

I*et Eqs.(4.33) and (4.34) be written as • 

__» i 

Wj* » - (s2K2+ 1 )j2f + (2l/h)tp 

^Va8 %m - 82^'-+^- (h/2L) 0 

(4.143) 

(4.144) 

Multiplying the Eq.(4.143) by 0 and the Eq.(4.144) by 

» adding the resulting equations, integrating over the whole 

beam, and carrying out some integrals by integration J>y parts, 

we have: 

. o o 1 “2 p —2 1 
AV / (0 )dZ = f - (s2k2+ 1)00 + #)(?^f- 0 ^*) 

+ * 
dZ 

= / (s2K2+ 1)0 - (|^)0 q; + (£sJj|_y + (^~)^ IdZ (4.145) 
_ h h6 -i 

Eq. (4.145) is the expression of the Normalizing condition which is 

very useful in analyzing the forced vibration problems. 



140 

4.9. APPROXIMATE SOIOTIOHS BY G.ALERKIN'S lECHHICM* i 

In this section, approximate solutions are obtained, 

for the problem of free torsional vibrations of thin-walled 

beams of open section including the effects of longitudinal 

inertia and shear deformation, utilizing the well-known Galerkinfs 

technique* Solutions with Galerkin* s method are illustrated for 

fixed-fixed beam and for a beam fixed at one end and simply sup¬ 

ported at the other. 

4.9.1. FIXED-PIXEH) BEAM; 

To satisfy the above boundary conditions in this case, 

the normal function 0 can be assumed in the form 

0 = S D (1- cos 2utcz) 
n=l n 

(4.146) 

Substituting Equation (4.146)in the differential Equation 

(4.35), orthogonalizing the resulting error with the assumed fun¬ 

ction, integrating the obtained function over the whole length of 

the beam and equating it to zero, the frequency equation lnX^ can 

be obtained as: 

(4.147) 

* Results from this part of the chapter were presented at the 17th 
Congress of Indian Society of Theoretical and Applied Mechanics, 
held at Birla Institute of Technology, Mesra, Ranchi, during 
December 2.2 1972. ) 

, 

1 
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Eq.(4.147) gives two real positive roots given by 

A 
mn 6s2a2 

oj^3 +4n2 Tt2 (a2 -f42+s2d2K2 ) 

+ (-l)m ^ | 5+4a8u8(*^a8-»*8d2K?) ] 

- 48 n2it2s2aB|4n2n2(B2K2+ lJ+K2^ ^ (4.148; 

In arriving at Eq.(4.148), only one term of the infinite 

series of Eq.(4.146) is utilized. Hence, Eq.(4.148) gives upper 

bounds and has an infinite number of roots which in general re¬ 

present two ooupled frequency spectra. 

By putting s2= d2= 0, Eq.(4.147) reduces to: 

3 >f - 4 n2n2(4u2n2+ K2) = 0 (4.149) 

and the expression for the frequency parameter A becomes s 

n - 7s5 (4n2n2+K2)1^2 (4.15d| 
An V3 

whioh is same as that from Eq.(2.73) for Zi 2 =*^2 =0. 

4.9.2. BEAM FITTED AT OHE END AND SIMPLY SUPPORTED AT THE OTHER; 

The normal function satisfying the boundary conditions 

in this case can be assumed in the form: 

0 « 2 D (cos Z - cos 3S2 Z) 
n=l n 2 2 

(4.151 

Substituting Eq.(4.15l) in the Eq.(4.35) and following 
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the Galerkin's method, the frequency equation In X 2 can be 

obtained as: 

16 A4 s2d2->\2 16+20 n2it2(e2+d2+ s2d2K2) j 

+ n2*2 [_ 41 n2it2(s2K2+ l)+ 20 K2] = 0 

Prom Eq.(4.152) we haves 

2 

K 
16 8*6.* L L 

J 16+20 n2n2(32+d2+s2d2K2) 

(-1) 16+20 n2n2(s|d2+s2d2K2) j 

- 64 n2it2s2d2 j[ 41 n2nz(BZX?+L)+20 K2 ^ 
1/2 

By putting s2= d2 = 0, Eq.(4.152) reduces to: 

16 >\ 2 n2*2 (41 n2st2+ 20 K2) » 0 

and the expression for the frequency parameter ^ becomes: 

A - f (41 M 20 

which is same as that from Eq.(2.76) for £> 2 = $ 2 =* 0. 

(4.152) 

(4.153) 

(4.154) 

(4.155) 

V 
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4.10. RESULTS AMD CONCLUSIONS: 

For a given Learn with K, s and d known, the >\ i(i=l,2,3,...) 

can be found from the appropriate frequency equations and the 

corresponding PjL are then calculated by Eq.(4.38). However, 

these frequency equations are highly transcendental ana^SKo" 

be solved simply. This difficulty is overcome by the use of 

bisection method on digital Computer IBM 1130 at the Computer 

Center, Andhra University, Waltair. The results are obtained 

for some typical boundary conditions and various combinations 

of K, s and d. The results are presented for the special case 

s = 2d, which is usually the case for many Indian Standard wide- 

flanged I-beams. 

Xo be classical eigen values obtained in Chapter 

II neglecting the effects of longitudinal inertia and shear de¬ 

formation and pQ, the natural torsional frequencies correspond- 

ing to ^Q. Comparing the mechanism of vibration of the classi¬ 

cal beam based on Timoshenko Torsion theory and the present 

beam based on the improved theory, we note that the classical 

beam is equivalent to present beam with longitudinal inertia 

and shear oonstraints. 

Therefore, 

p < P0 

and 

Vx0a p/p0 - q, q < 1 

The ratio of Ao or p/po> denoted by wln bQ ref 
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to the 1’modifying quotient11. The variation of the ratio 

X0 (also the modifying quotient q) with the longitudinal 

inertia parameter d for the first three modes of vibration of 

a simply supported beam is plotted in Fig.4.3, which shows the 
a ’ t 

corrections in the natural torsional frequencies owing to the 

individual influence of longitudinal inertia. In plotting this 

figure the warping parameter is taken as equal to 1.0 and the 

shear parameter s as equal to zero. It can be observed from 

Pig.4.3 that the reduction in the torsional frequency due to 

longitudinal inertia increases with increasing values of d. For 

a maximum value of d = 0.1, the reduction in the torsional fre¬ 

quency can be observed from the graph as about 10 percent for 

the first mode, 36 peroent for the second mode and 66 percent 

for the third mode. Therefore it can be concluded that the in¬ 

fluence of longitudinal inertia on the torsional frequencies in¬ 

creases profoundly for higher modes of vibration. 

For a simply supported beam, its higher harmonic corresponds 

to the fundamental of another simply supported beam of shorter 

span. The nth frequency of simply-supported beam of span I is 

equal to the fundamental of another such beam with span L/n. 

So, for the sake of simplicity and ease of presentation. Pig.4.4 

is plotted between the ratio ^/A0 and K/n for values of 

ns = 0.5, 1.0 and 2.0. For constant values of K and s the values 

of Va„ can be read from this figure for different Values of n 

(ie.f for different modes of vibration). If n is kept constant, 

the values of can be obtained for various combinations 

of the warping parameter K and shear parameter s. In plotting 

j 
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thi* graph, the value of th , 

d 18 as equal to ^ °W"d*« *»ertla patten 

F°r example if 

2 *—«« ;Me;; ZZIIZTOrIatloB or ** 

:::** a raiue :vr*=«• -«.*«. 
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” ' 4- tie value of >,/- 7 15 P8roent) and for t 
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*•««. u r(,:;r^ - — 1::7 
2“»a.er K. ueoveaeea «,e ^TT ** ^ 
f°re concluded +v, * ®8 of V>> . I+ ^ 

aea that the 4**., 0 xt oa^ be 
tion 4 ^ dividual 4r,-n ^here- 

„bJ; ae°reaS8 «• tovefouaa fr. n°9 °f Si8« defonna_ 
aM and ^ ^ * ” ** ^ aode of 
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frequency 0f vibraf4n deforma_ 
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reduction becomes significant fcr higher modes of vibration. 

It can be also observed that comparatively the Individual in¬ 

fluence of shear deformation on the torsional frequency of 

vibration is more profound than that of longitudinal inertia. 

Ihe combined effects of longitudinal inertia and shear 

deformation on the first four torsional frequencies of the 

first set of simply-supported, clamped-simply supported and 

elamped-clamp.d beams (s = 2d) are shorn in Tables 4.1, 4.2 

and 4.3 respectively. The values of the frequency parameter 

> and modified quotient. , - V*0 for the first four modes 

of torsional vibration are given in these tables for various 

combinations of the parameters K, s and d. 

It can be observed from Table 4.1 that in the cane of 

simply-aupported beams for K = 0.01, s = 0.10 and d = 0.05, 

the modifying quotients for the first four modes are respectively 

0.944, 0.826, 0.705 and 0.603 and therefore the reduotions in 

the first four torsional frequencies are respectively by 5.67 

17.4,/ , 29.5^ and39.?70 . For K = 10.0, a = 0.10 and d = 0.05, 

the modifying quotients for the first four modes are respectively 

0.986, 0.934, 0.851 and 0.762 and therefore the reductions in 

he^first four torsional frequencies are respectively by 1.4% 

7 > 14.9/^ and 23.8% . From these values we can observe that 

the increase in the value of warping parameter K reduces the 

effects of longitudinal inertia and shear deformation on the 

torsional frequencies of vibration and that for smaller values 
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of K the reductions in the torsional frequencies at higher 

modes owing to these second order effects become quite signi¬ 

ficant and should be taken care of. Similar observations can 

be made from Tables 4.2 and 4.3 for clamped-simply supported 

and clamped-clamped beams. It can be also noticed that these 

reductions in the torsional frequencies due to longitudinal 

inertia and shear deformation are comparatively high in the 

oase of olampod-olPimpefl banmn than In the on an of olnmped- 

Bimply supported or simply-supported beams* 

The results for the second set of frequencies for the 

simply supported, clamped-simply supported and clamped-clamped 

beams are given in Tables 4.4, 4.5 and 4.6 respectively. It 

must be recalled here that these second set of frequencies 

exist solely due to the inclusion of these second order effects 

Prom Tables 4.4 to 4.6, we observe that even in the case of 

second set, the effect of increase in the values of the para¬ 

meters s and d is to reduce significantly the frequencies at 

higher modes of vibration. It is interesting to note that the 

increase in the value of the warping parameter K is having a 

negligible effeot on those reductions in the frequencies of 

the sooond sot for all the three boundary conditions considered 

here. 
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CHAPTER - V 

FINITE ELEMENT ANALY3I3 OF TORS IORAL VIBRATI0M3 OF SHORT WIDE- 

JLlAHflMLP1LTH-wAT'1 -tnii maAMn thuijidihh g'ltig jginrmu'i'n air loho itijuihal 

INERTIA AND SHEAR DEFORMATION* 

5.1. INTRODUCTION: 

The problem of torsional vibrations of short wide-flanged 

thin-walled beams including the effects of longitudinal inertia 

and shear deformation is completely solved in Chapter IV utili¬ 

zing rigorous mathematical analysis. The highly transcendental 

frequency equations obtained for various end conditions could be 

solved only by lengthy trial-and-error procedure. Except for the 

case of simply—supported beam, the results for other complex boun¬ 

dary conditions could be obtained only by expending considerable 

effort. 
I 

Even the approximate analytical methods such as Ritz and 

Galerkin techniques have a tendency to become very tedious for 

some complex boundary conditions. The complexity of the analyti¬ 

cal techniques even for simple end conditions emphasizes the need 

for physically satisfactory approximate solutions. To this end, 

the present Chapter aims at developing a finite element analysis 

of torsional vibrations of short wide-flanged thin-walled beams 

including the effects of longitudinal inertia and shear deforma¬ 

tion. 

* A paper by the author based on the results from this Chapter 
is accepted for publication in AlAA Journal, See Ref.(b“2j. 

I 
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The basic theory behind the finite element method for 

dynamic problems is briefly presented in Chapter III and is 

shown to give results which are in excellent agreement with the 

exact ones. This chapter, therefore, extends the finite element 

method to torsional vibrations of doubly-symmetric thin-walled 

beams of open section including the effects of longitudinal 

inertia and shear deformation. New stiffness and masn matrioes 

for a thin-walled beam are developed in this chapter, for the 

first time and, to the best of author’s knowledge, there is no 

other finite element formulation for this problem available in 

the literature. The method developed in this chapter is appli¬ 

cable to uniform as well as non-uniform beams with any complex 

boundary conditions. A consistant mass matrix is made use of 

in conjunction with the corresponding stiffness matrix for find¬ 

ing the frequencies and mode shapes for free torsional vibra¬ 

tions of uniform thin-walled beams with various boundary condi¬ 

tions. Results obtained are compared with the exact ones ob¬ 

tained in Chapter IV and an excellent agreement is d^erved. 

5.2. MODIFIED ENERGY EXPRESSIONS: 

Two approaches are made to our present problem. In the 

first approach, the stiffness and mass matrices are developed 

in terms of the total angle of twist 0 and the warping angle 

directly utilizing the strain and kinetic energy expressions 

(Eqs.4.12 and 4.13) derived in Chapter IV. By assuming only one 

degree of freedom for each of the angles 0 and Ip, the stiffness 

and mass matrices each of 4 x 4 size are obtained which include 

the second order effects* But the matrices obtained in this 
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„ approach, though not shown here, does not satisfy the exact 

boundary conditions and thus could not yield good results. 

An alternative approach which will he discussed in de¬ 

tail in this chapter is to split the total angle of twist into 

two parts: One part is the twist calculated hy neglecting the 

shear strain in the strain energy expression, (Eq.(4.12) ); and 

the second part gives the contribution due to shear strain. 

Let us define the total angle of twist 0 as: 

0(z,t) = 0t(z,t) + 0g(z,t) (5>1) 

" b' 

where the subscriptAdenotes the part of the solution when the 

shear strain has been neglected, and the subscript s denotes 

the contribution of the shear strain to the total angle of 

twist. This type of choice has the advantage that when 0q is 

equated to zero, the resulting expressions reduce back to\he 

equations for the lengthy beams presented and solved in Chap- 

ter-II. This approach is quite convenient as it satisfactorily 

encompasses all boundary conditions of the present problem. 

By substituting Eq.(5.1) into Eq.(4.9) we obtain: 

u = (h/2) (0.+ 0 ) 
« s 

Substituting of Eq.(5.2) into Eq.(4.6) gives: 

+ G 
sh 

1 . h 30 
8 a* 2 ^ 

'From Eq.(5.3) we can write: 

2 

(5.2) 

(5.3) 

(5.4) 
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t 

o 

h d& 
®sh * 2jf (5.6) 

By substituting the expressions forT^and esh from Eqs.(5.4) and 

(5.5) respectively into Eqs.(4.4) and (4.7), the expressions 

for moment M and shear force Q can be obtained as: 

and 

M = 

- Q KV S 
d0 
JjB 
9z 

(6.6) 

(5.7) 

By substituting Eq.(5.l) into Eq.(4.l), the strain 

energy due to saint-venant torsion oan bo obtained as: 

(6.8) 

By substituting Eqs.(5.6) and (5.4) into Eq.(4.5), the 

strain energy Ug of the two flanges due to warping normal strain 

becomes: 

U 
2 

1 
2 

L 
/ EC ( 
o w a„2 1 dz (5.9) 

Substituting Eqs.(5.1) and (5.7) into Eqs.(2.2a) and 

(4.8), the expressions for the Saint-Venant torque T and the 
s 

torque due to warping Tw can be respectively obtained as: 

and 

T 
3 

GO a 

d0 
+ -~e ) 

az 

Qh = k'a^G 

(5.10) 

(5.11) 
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Hence the total torque T± (See Eq.4.10) can be obtained 

from Eqs.(5.10) and (5.1l) as* 

00. 90o , h2 90 
(5.12) 

Substituting Eqs.(5.7) and (5.5) into Eq.(4.1l), the strain 

energy due to shear deformation of the two flanges, Ug, be- 

oomes: 

vi? KVIS(^a)S (6,1,) 

The total strain energy, U, at any instant t (See Eq. 

4.12) is the sum of the energies Ug and U3 and therefore 

given by 

u = | / 
4 o 

G-C 

00^ 00 2 920 2 , h2 90 2 

» a- a* w 0Z2 f 2 0Z . 

&z (5.14) 

3 dz &z 

By substituting Eqs.(5.l) and (5.4) into Eq.(4.13), the 

total kinetic energy, T, at time t becomes? 

^\2n 

W 0Z0t * =|/ 
K o 

90+ 90_ 2 pn .a 0t^2 
fiD(—1 + —*) + Pcw(tt) 

p 0t at 
dz (5.15) 

5.3. MODIFIED NATURAL BOUNDARY CONDITIONS: 

In terms of the angles 0^ and 0g the natural boundary 

conditions given by Eqs.(4.19) to (4.22) can be modified as 

follows: 

(a) Simnlv supported end: 

0 => 0; 0t = 0; 
d20 

az2 
0 (5.16) 



(b) P£2SJL_SMJ 

0S= 0; 0t=O; (5.17) 

(c) Free end: 

d\ ¥t , , 2/ . 30. 
_£ a o; GC —* + (GO + K A.G h8/2) —a = 0 
02^ 8 3z 8 1 0z 

(5.18) 

SB 
oV 

02 

acf 
_a 
0z 

f (5.19) 

The conditions given by Eq4(6.1&) are useful for find¬ 

ing symmetric modes of vibration in simply supported, fixed- 

fixed and free-free beams. 

5.4. FINITE ELEMENT FORMLATION: 

In the present formulation, for each finite element of 

a short thin-walled beam in torsion including the effects of 

longitudinal inertia and shear deformation in addition to warp¬ 

ing, there are four generalized nodal displacements at the j 

end of the ith member. These nodal displacements are: 

0^=3 angle of twist neglecting shear strain at the shear 

center about z-axis; 

0t^= rate of change of 0^ at the shear center about z-axis 

0Q^ = angle of twist due to shear strain at the shear cen¬ 

ter about z-axis; 

0 a= rate of change of 0 at the shear center about z-axis 
B J S 
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j 

where subscript j denotes the generalized displacement at the 

i end of the ith finite element. Similar generalized nodal 

displacements exist at the K end of the element. The prime 

denotes differentiation with respect to z. 
' 

Assuming the angles and 0g within each finite ele¬ 

ment to vary cubic^Ly the displacement functions take the form: 

0t(z) = a^ bjz + c±z2+ d^3 (5.20) 

and 

0a(z) = a2+ b2'z + c2z2+ d2z3 (5.21) 

To establish relationships between the displacements 

at any interior coordinate z in terms of the generalized nodal 

coordinates, the eight arbitrary constants in the assumed displa- 
i 

cement functions must be determined. 

After determining the coefficients in Eqs.(5.20) and 

(5.2l), the angles ^ and 0g at any coordinate z within the 

element in terms of the nodal displacements 0+A, ./9z, 0.^, 
"Cj tj ’ tK’ 

8-11(1 and» &8y 9^sj/dz» ^aK» and 9^sk/9z can be respec¬ 

tively defined as follows: 

0t(z) = 

and 

(1-3|2 +2^3), z(l-2^1+|^), (3^-2^3),z(-^+g) 

(5.22) 

5tN(t) 

■ 

“tr. 

v 
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(l-3^2+2-g3)>z(l_2^i + ^2)>(3^2_2^3)z(_.^L+^2) 

(6.23) 
where -f>1 = 2/l. 

Eqs.(5.22) and (5.23) can be written in an abreviated 

form as follows: 

0t(z) “ A (e) StN(t) (6.24) 

and 

tfg(z) = A (z) fisir(t) (5.25) 

where 

5tN“ l^ty Ky ^tK» <K j (5.26) 

“ t ^Sj’ ^sj’ ^sK’ ^SK ] (5.27) 

and A ( 
l 

z) is given by Eq.(3.23). 

* 
Similarly, for the first and'second derivatives of the 

angles 0^ and 0g, the matrix relations can be written as: 

K(z) = (A(z)RtN(t))’= A^zjR^t) (5.28) 

^’(z) - (A(z)HtN(t))”- I2(z)|^.N(t) (5.29) 

0s(z) = (A(z)RsN(t))’= ^(z^^t) (6.30) 

and 
« 

*C(z) = (A(z)SgN(t))"= AgCzJI^Ct) (5.31) 

whore ^(z) and A2(z) are defined by Eqa.(3.27) and (3.28), 
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The general!Bed velooities and aooolerationo onn also be 

expressed in terms of the disoretized nodal velocities and 

accelerations: 

That is: 

0t(z) = A(z) Itlf(t) 
(5.32) 

^(z) = \(z) RtN(t) 
(5.33) 

Vz) ■=• A(z) ltN(t) (B.34) 

0B(z) = A(z) Rsir(t) 
(5.35) 

and 

0B(z) = A(z) RsN(t) 
(5.36) 

where dots denote differentiation with respect to time t. 

6’5' £grlvation 21 Element Matrices including Second Qr^r 

The expressions for the strain energy U, and Kinetic 

energy TK,given by Eqs.(5.14) and (5.15) respectively, for 

an element of finite length, 1, can be written as follows: 

U = 1 } 
2 t aos(K* K[s+ k\^(02 

and 

T _ 1 i dz 

dz (5.37; 

(5.38) 

Direct substitution of Eqs.(5.24) to (5.36) Into Eq,.(5.35 

Ml (5.38) end the resulting expressions Into hTu^'s*ta£ 

Pie, Eq.(3.34) for W = 0 , yields (for the llth element)! 
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}* T . 1 •*-' 
^•hN ^ ^ + f & 

*T -T - ^ 

sN A A RsN dz 

1 iT -T - i 1 -T -T - i 

+ / RtNA A RsN dz + / R„w A A R^w dz sN tN 

y°0 1 -T -T — r. 

+ 2 ^ £ RtN \ A RtN dz 

“ 2 { RtN ^ BOw A2 A2+ °°s ^ ^ RtN dz 

1 i .2 1 -T _T _ _ 

- 2 (GCs+ K AfG T> 1 RsN *1 Al RSN dz 

GO 
_S 

2 

1 _T -T - - 1 _T -T - _ 

{ RtN h h RSN dz + f RsN ^ ^ Rtu dz 
dLt 

= 0 (5.39) 

Eq.(5.39) can be also written more concisely as follows: 

dt «• 0 3lN " Z 2 [(P V} RN mN (EOyi/5)^ K, 

(6.40) 

In Eq.(5.40) the terms (/°IpL)mN and (EC^/L3)!^ denote 

respectively the new mass and stiffness matrices MN and KfJ. 

respectively of the Nth element. The matrices 5jj, Kjj and <J 

are given below: 

m N 

m 
11 

-T -I 

®21 

^420 H4 

521 ?22. 

(5.41) 

ify ifi? ■ 

H'- ftrrrr* i A-1: 





1G7 

Wii'r ■ 

WSr>* ■ 

i 

K 

301T2 

K, 
21 

K2 

30N2 

^ * 

K 0 
.22 

(s2KS+ 1) 

30 a2^ 

36N2 

3N 

-36N2 

3N 

361r 

3N 

-36N2 

3N 

361T 

3N 

-36N2 

3N 

4 

-3IT 

-1 

4 

-3N 

-1 

4 

-3N 

-1 

Sym. 

36N2 

-3N 

Sym. 

36N2 

-3BT 

Sym. 

36N2 

-3H 

(5.46) 

4 

(5.47) 

(5.48) 

qtH = t 0-fcj* LjZ,tj’ ^tK» ^tK 3 

Kr <r 

(5-49) 

(5.50) 

€tn& the non-dimensional parameters K^, and s^ are previously 

defined by Eqs.(4.39), (4,40), and (4.41) respectively. 

The equations of motion for the discretized system can 

now be obtained using Eq.(5.40). Talcing the variation of the 

integral expression of Eq.(5.40) we obtain: 

> [ (/=■ y) * qj a„ tH- (EoyL3) 5 % Sn ^ ] dt = 0 (5.51) 

1 
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which after integration by parts over the time interval gives: 

(>v> ‘6v»s,|ts 
JL 

dt = 0 (5.52) 

The first term in Eq.(5.52) is seen to vanish in view of 

the assumptions made previously that the virtual displacements 

6q^ are zero at the time instants t^ and t^. Since the virtual 

displacements can he arbitrary for other times then the only 

way in which the integral expression in Eq.(5.52) can vanish 

is for the terms within the brackets to equal zero. Therefore, 

the governing dynamic equilibrium equations for the discretized 

systems are: 

(soyL3) 0 (5.53) 

Assuming that the displacements undergo harmonic oscilla¬ 

tion, the displacement vector q can be written as: > 
N 

.1unt 
(8.54) 

where Qjq- is a column vector of torsional amplitudes of the 

general torsional displacements. Substituting Eq.(5.54) into 

(5.53) gives: . 

[ (ECyL3)^ - ( flpL p^iij Qn eiPnt = 0 (5.55) 
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Deriding throughout hy EC^D3 and cancelling e1^, 

Eq.(5.56) "becomes 

^ mm 2 

-1 C 3 " * E J (5.56) 

where X is the non-dimensional frequency parameter defined 

previously by (Eq.(4.38). Eq.(5.56) represents the equations 

of motion for an undamped free oscillating system including 

the effects of longitudinal inertia and shear deformation. 

5‘6' gabions °£ Equilibrium for the totally assembled beam; 

Following the procedure outlined in section 3.5 and utili¬ 

sing the element stiffness and mass matrices presented in sec¬ 

tion 5.5, the equations of equilibrium for the totally assembled 

team can be obtained as: 

[ ^ ] L Q ] = A [ m ] [ $ ] (5.57) 

where K, m and Q denote the totally assembled matrices corres¬ 

ponding to the element matrices *N, mN and defined previously. 

With the four generalized displacements possible at each node 

and with the bar segmented into N elements, the total number of 

degrees of freedom is 4 (N+l). The formulation of the matrix 

equilibrium equation, Eq.(6.57), includes all possible degrees 

of freedom, both free and restrained. The displacement vector 

Q of this overall joint equilibrium equations is comprized of 

both degrees of freedom, the unknowns of the problem and known 

support displacements or boundary conditions. 
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6*7, —-U'n<lary conditions useful for Modifying the total 
Matrloaa: 

It should be recalled here that for the present 

finiti element formulation, totally four generalized displa¬ 

cements are considered at each node. The following are there¬ 

fore the boundary conditions to be utilized in order to modify 

the total stiffness and mass matrices for various combinations 

of end supports. 

Simply supported end; 

^ = 0 ; 0t = 0 

(*>) Fixed end: 

(5.58) 

0g = 0 
*t = ° % = 0 (5.59) 

(o) Free end; 

The total matrices need not be modified in this case. 

L (2ft 

(S-Zg)% 

0 ; L 0' 0 (5.60) 

£<18^ (5.60) are useful for finding symmetric modes of 

vibration in simply supported, fixed-fixed and free-free beams 

’ 

am 
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5.8. RESULTS AMD CONCLUSIONS: 

A digital computer programme is written in Fortran IV 

whloh can give results for any^set of boundary conditions. 

Results for simply supported and fixed-fixed beams for values 

of K = 1.541, s = 0.046 and d = 0.023, are obtained on IBM 11$0 

Computer at Andhra University, Waltair and are presented in 

Tables 5.1 and 5.2. 

For the simply supported case, the first and second sets 

of values of A obtained for the first four modes of vibration 

for a division of the beam into N = 2 and 3 segments are shown 

in Table 5.1 and are compared with the exact results obtained 

using the analysis presented in Chapter IV. For, the fixed- 

fixed beam, the first set of values of .A obtained for the first 

four modes of vibration of U = 2 and 3 are shown in Table 5.2 

and are compared with the exact results. The exact results 

for the simply supported case were obtained using Eq.(4.65) 

and for the fixed-fixed beam, the results were obtained using 

Eqs.(4.44) and (4.72). 

It can be seen from Tables 5.1 and 5.2 that for all cases, 

excellent results have been obtained even for very coarse sub¬ 

divisions of the beam. Since the stiffness and mass matrices 

including shear deformation and longitudinal inertia seperately 

involve double the number of degrees of freedom than those that 

exist if they are neglected, twice as many natural frequencies 

result. In Table 5.1 the lower and higher spectrum of frequen- 
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cies obtained can also be observed to be in excellent agree¬ 

ment with the exact ones. In Chapter IV, we have discussed 

this second set of frequencies in detail. 

Using the above stiffness and mass matrices, beams with 

various other boundary conditions, can be analyzed easily. A 

beam with variable cross section can also be analyzed by divid¬ 

ing the beam into a number of segments and assuming that each 

segment has a oonstant oroos seotion. In all oases (as we 

observed from Tables 5.1 and 5.2), the method gives an upper 

bound to the exact frequencies of the system. The approach 

presented in theiiChapter is quite general, satisfactorily en¬ 

compasses all boundary conditions and can be extended to sta¬ 

tic and dynamic stability of uniform and tapered thin-walled 

beams. 
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CHAPTER - VI 

FORCED TORSIONAL VIBRATIONS OP SHORT WIDE-FLANGED BEAMS WITH 

LONGITUDINAL INERTIA, SHEAR DEFORMATION AMD VISCOUS DAMPING* 

6.1. INTRODUCTION: 

In Chapters IV and V, the problem of free torsional 

vibrations of short thin—walled beams of open section, includ¬ 

ing the effects of longitudinal inertia and shear deformation 

is completely analyzed utilizing the exact and approximate ana¬ 

lytical methods and the powerful finite-element technique. 

With regards to the forced torsional vibrations of thin- 

walled beams of open section very few studies are available in 

the literature. Tso Ooty), extended the Timoshenko torsion 

theory for coupled flexural-torsional vibrations of thin-walled 

beams of open sections and presented a formal solution to Gere's 

theory (iz) under general loading conditions and general boun¬ 

dary conditions. Aggarwal (3), considered the problem of 

forced torsional vibrations of thin-walled beams of open section 

under very general loads including the effects of longitudinal 

inertia and shear deformation, and solved the specific case of 

a simply supported beam with a step torque impulsively applied 

at the mid-point. He compared the results obtained for the 

above problem, with those obtained utilizing Timoshenko torsion 

theory. But in all these studies the effect of dampingnot 

* f paper by the author, abstracted from this Chapter, is accep¬ 
ted for publication in the August 1976 issue of the Journal of 
the Aeronautical Society of India. _j- # , C5^ 
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considered. 

The present Chapter therefore deals with the study of 

foroed torsional vibrations of doubly-symmetrio thin-walled 

beams of open section such as an I-beam, Including the effects 

of longitudinal inertia, shear deformation and viscous damping. 

Viscous damping forces arising separately from torsional and 

warping velocities aro included in tlio equations of motion and. 

tho ooupled fundamental equations of motion are formulated in 

terms of angle of twist and warping angle. The method of solu¬ 

tion is demonstrated for arbitrary external torque for the 

beam having both ends simply-supported and numerical results 

are presented for the case when the torque is uniform over the 

span and varies sinusoidally in time. Amplitude response is 

plotted versus torsional frequency for varying amounts of tor¬ 

sional and warping damping, and is compared to the response for 

the classical beam (based on Timoshehlco torsion theory) for the 

first five symmetric mode shapes. 

6‘2' jjgRlVATIOlf Ok EQUATIONS OP MOTION IhOLimiiid VISCOUS DAMPCTfl 

In Fig.6.1, a typical differential element of length dz 

and width b^is taken from the flange of the thin-walled beam, 

and the generalized forces acting are shown. Assuming small 

displacements as in Chapter IV and summing the torques yields 

one equation of motion: 

I 

(6.1) 
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where Tfl is the Saint Vonant torque given by Eq.(2.2a), Tw the 

warping torque given by Eq.(4.8)f the torsional damping con¬ 

stant and, Tq the external torque per unit length of the beam. 

Summing moments about an axis normal to Pig.6.1 yields 

the second equation of motion: 

9M 

9z 
- Q - qfy" (6.2) 

where M is the bending moment in the top flange given by Eq.(4.4), 

Q the shear force given by Eq.(4.7), q the external viscous force 

per unit length acting along the sides of the flanges, of width 
* 1 

b, to oppose warping. 

Further, let us define a warping damping constant 3„ by: 
w 

w 

*■*: 

3 .3 Zip 
W _2_ 

at 
(6.3) 

' Substituting Eqs.(2.2a), (4.8), (4.4), (4.7) and (6.3) 

in Eqs.(6.l) and (6.2) we obtain: 

GC_ + K *,<*(§ - 4*)+ fl (6-4) 
P 3t^ 0. dt 'B dz2 f 2 ez2 az 

and 

EIf KAfG(§ & -y) = Plf^+3,„4^ (6.5) f 2 
az f at2 w at 

» It is necessary to obtain solutions to the differential 

Equations (6.4) and (6.5) which also satisfy the boundary condi¬ 

tions of the particular problem being considered. This may 4-e 
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■ .$ v 

aohieved by assuming solutions in the form: 

0(z, t) = 2 0 (z) F (t) 
■n ** n 

(6.6) 

Ms, t) = Z ^ (Z) Gr (t) 
y, n n n 

(6.7) 

where 0^(z) and ^n(z) are the mode shapes obtained from solv¬ 

ing the free, undamped vibration problem. The modo shape fun¬ 

ctions are given in section 4.7 of Chapter 17 for the six cases 

arising from combinations of simply supported, clomped and free 

ends. This procedure will be used below to investigate the case 

when both ends are simply supported. 

6-3. SOLUTION FOR THE CASE OP A SIMPLY SUPPORTED BEAM: 

Consider a beam of length L having its ends z=0 and z=L 

both simply supported. From Eq.(4.65) of Chapter IV, the fre¬ 

quencies of vibration for this case are given in an alternative 

form as: 

r b - (b - 4ac) 
2a (6.8) 

where 

(6.9) 

(6.11) 
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Prom Eqs.(4.67) and (4.68) of Chapter IV, the mode 

shapes for this case are given by: 

0n(z) - 8ln2ja (6.18) 

i v ■' &*2is) = Bn 008 

where ^ and Bn are arbitrary amplitudes. 

Let the external torque per unit length be expressed 

as: 

t) = (6.14) 

j where Fourier coefficients are determined from 

^(t) = f / Te(a,t) sin ^ dz (6.15) 

The solution of the coupled differential Eqs.(6.4) and 

(6.5) can progress in several ways, ffe will begin by first un¬ 

coupling them. Differentiating Eq.(6.4) with respect to z, 

solving Eq.(6.4) for 9^/dz, and its higher derivatives, and 

substituting into Eq.(6.5) yields a fourth order uncoupled equa¬ 

tion for 0 given by: 

—+ EO 
9^0 

riiih, °spif, p'/i 
K Af w a? " K AfG K'Aj 2 

T »4, d-0 

az2at2 

- GO dZ0 _ 
s a_2 

EI,,|3. pC R l'2 
+ -2Ui + 

K Af G K Af 2 

P h" w 

dz^dt 
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p® i i 
?:•.Vf 
K 
V 

et 
1 kaJg 

+ p* 
80 

dt 
= T + -T 

9 K A^G 
+ P. (6.16) 

Similarly, eliminating 0 between Eqs.(6.4) and (6.5) 

yields the uncoupled equation for ^ given by: 

EIfCs 
+ BCW 

LK Af WJ az4 k 

, .a. I. C fl. 
-T ■ -P-f- +-f—£ + 

K A, 

Pi^2] a4^p 

2 9z23t2 

a2^ 

0 a? G0- TS “ 

EIf Pt P_0. « "2 
+ ■ y +^i 

K AfG E Af 2 

93 ^5 

a?at* 

+ “T2-3*' -T + 
K AfG at4 K AfG K AfG 

93^> 

at3 

v ' 
1 

sV 9 ^ h 

7? + ?* ~" s 

9T 
_S 
9Z 

(6.17) 

As expected, the left-hand sides of Eqs.(6.16) and (6.17) are 

identical. 

Substituting Eqs.(6.6), (6.7), (6.12), (6.13) and (6.14) 

into Eqs.(6.16) and (6.17) results in: 



n4*4 / EI.O J 
T ( —T~“ + BO 1 + 

* L K ff "1 

182 

n2n2GC 
Pn(t) 

4. X ft j. ng7Ig , ^w0n ^ . 
7 V T2“ ( r^-~ + + ) r *„(*) 

■ '• ,rv.r 

" K AfG K Aj 2 

+^¥ < ^ ♦ tii! 
P k'AfG L2 K LG K A. ) f V*) 

?Mt PV„ + ( l^L-1 + LjpEla ) p' (t) 
K AfG K y n 

'11, 
♦ 

K Af G 
Pn(t) 

&■.«* &■ 

i r 44 
1 EI,0 

I> K Af 

^ I2 K 

K AfG 

n27t2GO i 
t 
f °n<*> 

) ( G i 
K Af 2 n 

(6.18) 

vv *« *J 

+ 0 
K AfG I K AfG K Af 

)> ^ (t) 

nrth . /^Vt . ••’> . P2I„I, ..» 

^ *7&> °n(t) + 7# ^ ■ 5T ^n<‘> <•.»> 

\l-, ■<- J 
■ 
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where dots denote differentiations with respeot to time. 

Eqs.(6.18) and (6.19) contain an exciting torsional function 

Cn(t> whioh oan be of any form. 

6.4. RESPONSE TO A UNIFORMLY DISTRIBUTED TORSIONAL FORGING 

FUNCTION SINUSOIDAL IN TIME: 

For purposes of detailed numerical results, let T (z,t) 
0 

he 

T0(z,t) = TQ sin^t (6.20) 

where TQ is a constant and cS>the torsional excitation frequency. 

Then, from Eq.(6.16) it follows that! 

XaM 
4T 
- sin c-31, n = 1,3,5,... 
n7t 

Assuming a solution in the form 

(6.21) 

Fn(t) = sinofl-t + Bn cos&St (6.22) 

Substituting Eqs.(6.2l) and (6.22) into Eq.(6.18), and 

equating coefficients of sin cJt and cosc<9t yields 

„ _ 4 K„n[K'Af(i.(nVAg)EIf- 

" ”* "Vli* 4a> 

(6.23) 

(6.24) 

/ 
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where 

V 
n4*4 EI.C 

( —f £ 
K A- 

n^Tt^GO 
+ ec ) + —-—a 

' ^11 

> 

0*p_ 

P K AfG L 

m 

K A^G K Aj 
&9* 

<*v )Li «9* 
K AfG 

t 
•*-**h. 

(6.25) 

, n2*^!., n2tt2 / c h.2A 
■W *-| >*“\ — fcf- + 5 j 

c3ze 

K A^Gi* w L2 \K Af 

( M*+ PiJ 

•f.' 

■ <yksi 

‘Mi 

K A^G "t f w p 

Similarly, assuming a solution 

®n(t) = Cn sin (->fc + Dn coso9t 

and substituting Eq.(6.2l) and (6.27) into Eq.(6.19) yields: 

J|. , D 
«T> 

(6.26) ' 
■ W 

% 

(6.27) 

2 T h. 

V — 

where and are defined by Eqs.(6.25) and (6.26). 

“2 T~h V 

I(KL+ KL> 

(6.28) 

Of course, Eqs.(6.22) and (6.27) may be replaced in a 

more convenient phase angle form as: 

M 

’ 
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Fn(t) =• sln(^t + aro tan B^A^) 

G&(t) *» ^ + Dn + arc tan Dn/Cn) 

Further we note that D /C ■ - B /k 
n n n n 

(6.29) 

(6.30) 

6*6, £BBS. AW) FORGED VIBRATIONS OH' A 01/^33 Ig BEAM 3IMPLY SUPPORTED 

For purposes of comparing with the preceding results» let 

us now summarize the classic solution. In the case of the classic 

beam based on Timoshenko torsion theory, the effects of longitudi¬ 

nal inertia and shear deformation are neglected and by putting 

1/K = 0 and £lf= 0 in Eq.(6.16) we obtain: 

Considering first, free vibrations with no damping, the differen¬ 

tial equation becomes 

BO 
w 0C 

•2lf.cc + Pi = 0 
a-4 8 dz2 D «-»• P 3tJ 

(6.32) 

which was treated in detail by Gere (31). 

The solution to this aquation in terms of circular and 

hyperbolic functions is well known (5l). It can be seen that a 

function which satisfies the boundary conditions of a beam sim¬ 

ply supported at both ends is given by: 

0 = S F (t) sin 
n=l n L (6.33) 
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Substituting Eq.(6.33) into Eq.(6.32) and recognizing 

that the resulting equation must be satisfied for all values of 

z within 0 < z < L gives 

GC ) P (t) = 0 
B II (6.34) 

Prom Eq.(6.34), the well known (3 2.) frequency equation is found 

to be r 

p = LS2 
n YtC 

n®w®EC + L8GC 
-y_a 

1 L2 
p 

(6.35) 

For the steady-state solution of the forced, damped vib- 

ration problem as before, assume 

0 - 2 F„(t) sin £22 
n«l n L 

. . 00 Wlz 
T (z,t) = Z 2T (t) sin -— 

e n=l n L 

where, from Eq.(6.15) 

4T 
rn(t) = ~ sin^t, (n=l,3,5,... ) 

(6.36) . 

(6.37) 

(6.38) 

Substituting Eqs.(6.36), (6.37) and (6.38) into Eq.(6.3l) yields 

V nV 

L 2 E V GCs 

4T. 

Pn(t)+ PtPn(t)+ <Vn(t) = H^sin^t (6.39) 

having a steady-state solution 

Fn(t) = En sincSt + Hn coso9t 

Substituting Eq.(6.40) into Eq.(6.39), we obtain 

(6.40) 

. “i&A. 
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H 

or 

where 

(4To/n7t)f(n2Jt2/L8) |^n27C2A2)EC + GC 

L ^(n2^/^) [(n27i2/L2)ECw+ Gcj-J f>I?( 
- (6.41) 

- (4Tq Ajp/nn) 

(6.42) 
IpJ2+ 

1 (,2l%(Pn~c£)2+(P£*)ZJ’ ^ sin(69t 

/ 

+ 9) (6.43) 

n 9 =  -5-—- 
^Ip(pJ-^) (6.44) 

6-6. DISCUSSION OF NUMERICAL RESULTS: 
r 

/ 

The solutions obtained were programmed on IBM-1130 Com¬ 

puter at Andhra University, Waltair, to allow a numerical study 

of the effects of the parameters involved. Some of the interes¬ 

ting results obtained are shown in Figs.6.2 to 6.8. In Figs.6.2 

to 6.8, only the response of the first mode shape is considered. 

The values of tks constants used for these figures are as follows: 

n=<L;^= 0.00884332(lbs/in3); E = 30 x 106 (lbs/in2); 

<5= 12 x 10®(lbs/in2); Af= 20.7584(in8:); Ij;= 469.532(in4); 

V 17246•7(in4); V 27.3252(in4); Cw= 3,02,23l(in6); 

1 = 760(in) and TQ= 1.0, 

which correspond to a wide-flanged steel I-beam, 36 WF 230, with 
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width of the flanges b - 16.475(in), height between the center 

lines of the flanges h = 35.88(in), thickness of the web t -0.766 

(in) and thickness of the flanges t,= i.26(in)4 

__ v 'h 

Pig.6.2 is the plot of torsional amplitude against forc- 

cing function frequency with varying values of torsional damping 

for the classical beam based on Timoshenko torsion theory. 

Pigs.6.3, 6.4 and 6.5 are the plots of amplitude versus 

frequency including the effects of longitudinal inertia and shear 

deformation. For each set of the curves, the value of p , the 

damping associated with warping angle, ia held constant ^hile the 

values of torsional damping pt are varied. 

It can be observed that the general shapes of the plots 

30 not differ at all from that of Fig.6.2, l.e., shear deforma¬ 

tion and longitudinal inertia effects do not radically alter the 

form of the amplitude-frequency ourres. As erpected, increasing 

the damping associated with warping angle has the effect of low- ' 

ering the amplitudes. 

Pigs.6.6, 6.7 and 6.8 are also amplitude frequency plots ■ 

including longitudinal inertia and shear deformation effects, 

t for each set of curves Pt is held constant while P is varied 

from zero to 10*. Again, the general foOT of the curvls is not 

ike that for the classical beam. However, comparing Pigs.6.6, 

6.7 and 6.8 with Pigs.6.3, 6.4 and 6.5, it will be readily seen 

that the variation of damping associated with angle of twist p , 

kas a much stronger influence on the curves than the variation^ 

-if. 
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of damping associated with warping angle Pw- Therefore, inclu¬ 

ding the effects of longitudinal inertia and ehear deformation, 

the torsional velocity damping is more significant than the warp, 

ing-velocity damping. 

Further, to consider the effects on higher modes, light 

torsional damping, (f»t«200, Pw=0) will he applied to a beam of 

large depth to length ratio. Keeping the same physical para¬ 

meters as above, except letting L = 100 (in) to emphasize the 

shear deformation effects, the 'maximum total torsional ampli¬ 

tude' response may be computed,. This is the maximum torsional 

amplitude obtained due to superposition of the responses of all 

modes when the separate natural frequencies are successively 

ex oited. Maximum total torsional amplitudes are given in 

Table 6.1, for the first nine symmetric mode shapes of the sim¬ 

ply supported beam. From Table 6.1, it is observed that as the 

mode number n increases the difference between the natural fre¬ 

quencies of the classical beam and, those obtained from the pre¬ 

sent analysis including the effects of longitudinal inertia and 

shear deformation, also increases. As shown in Chapters IV and 

V, the natural frequencies obtained by including the effects of 

longitudinal inertia and shear deformation are lower than those 

for the classic beam. However, the amplitudes obtained includ¬ 

ing longitudinal inertia and shear deformation are larger than 

those for the classic beam. 

i 
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CHAPTER - VII 

TORSIONAL WAVE PROPAGATION IN ORTHOTROPIC THTN-WATiT/RT) BEAMS OF 

OPEN SECTION INCLUDINC THE EFFECTS OP LONGITUDINAL INERTIA AND 

SHEAR DEFORMATION? 

7 .1. INTRQDITOTION: 

In the previous Chapters* free and forced torsional vib¬ 

rations of short thin-walled beams of open section including the 

effects of longitudinal inertia and shear deformation are analy¬ 

zed both by exact and approximate methods. The present Chapter 

deals with the Important problem of torsional wave propagation 

in orthotropic thin-walled beams of open section including the 

seoond order effects. 

Though there exists a good amount of work on the analy¬ 

sis of flexural wave propagation, comparable torsional wave 

analysis was virtually neglected and very few papers on this topic 

have been published. The reason is the fact that Coulomb theory 

gives the same first-mode results as the exact theory. The avai¬ 

lable information is almost limited to the circular cylindrical 

bars. Thus, there exists a lack of satisfactory approximate and 

exact theories for torsional wave propagation in non-circular bars, 

especially those used in structural applications such as thin- 

walled beams of open section. 

* A Paper by the author based on the results of this Chapter is 
accepted for publication in the Journal of the Aeronautical 
Society of India. See Ref.( 5^}. 

T 
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* 

* 

♦ 

An Inadequacy of St.Venant's classical torsion theory 

for short wave lengths was hinted at by love ( ?6), who sugges¬ 

ted a correction for the longitudinal inertia associated with 

torsional deflection. Vlasov (/c?7) also introduced the effect 

of longitudinal inertia In his torsional analysis of thin-walled 

beams. However, both the elementary theory and Love's or 
/ 

Vlasov's approximation have the same defects as do their counter¬ 

parts in longitudinal wave-propagation theory. The dynamic equa¬ 

tion used by Gere (3^-) in his torsion analysis was essentially 

that previously derived by Timoshenko (°> S) and included the ef¬ 

fect of warping of the cross section. These equations are found 

to lead to physically absurd results for short wavelengths. 

Aggarwal and Cranch ( ^ ) presented a strength of materials 

theory including the effects of warping of the cross section, 

longitudinal inertia and shear deformation. This theory was 

found to lead to theoretically satisfactory results for the first 

mode of transmission over a wavelength spectrum which included 

moderately short wavelengths, and that it agreed with previous 

approximations for large wavelengths. The group velocity for 

the second mode was found to increase monotonically from zero 

for the longest waves to the bar velocity for very short wave¬ 

lengths. This was in agreement in form with the higher modes 

of the exact theory for circular cylindrical bars 

All the above work, and a host of other investigations 

involving torsional wave propagation phenomena in thin-walled 

beams, concerns isotropic materials. Anisotropic materials have 

i 
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not been approached to the best of author’s knowledge. As is 

well known, anisotropy of the material introduced eonsideatable 
■4,\ 

oomplioations in the computational part of the solution. 
Hi 

The present Chapter therefore, aims at investigating 

the problem of torsional wave propagation in orthotropic thin- 

walled beams of open section including the effects of longitu¬ 

dinal inertia and shear deformation, from the strength of mate¬ 

rials approach. This approach is attractive for its physical 

directness. More specifically, the interest is to find what 

values of the wave frequency result from the elementary theory 

established for the anisotropic analog of the isotropic thin- 

walled beams of open section including the effects of longitu¬ 

dinal inertia and shear deformation. To this end, the equation 

of motion for free torsional vibrations of thin-walled beams of 

open section of orthotropic material including the second order 

effects is established, analogous to that for isotropic material. 

It is shown herein that, for some anisotropic materials, the 

corrections due to longitudinal inertia and shear deformation 

may be of one order of magnitude greater than the correction 

in the isotropic case. Graphs are also given for the phase 

velocity versus inverse wavelength for various aspect ratios of 
\ 

beams of different materials. 

7.2. ANALYSIS AMD EXAMPLES: 

For definiteness and simplicity, let us take the mate¬ 

rial of the thin-walled open section beam to be orthotropic, 
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with one axis of elastic symmetry, z-axis, directed along the axis 

of the beam. 

As is well known the fundamental equation of elementary 

theory of flange-bending retains its validity for anisotropic 

materials of the most general type, provided the isotropic' 

Young’s modulus is replaced by the modulus E for extention- 
zz 

compression along the axis of the bar. 

In symbols, 

(7.1) 

analagous to the Eq.(4.4) for the isotropic beams. 

Wow, in the derivation,in strength of materials,of the 

formula for the maximum shear stress in flange-bending, 

■C(max) => 
ZJL (7.2) 

no specific elastic properties of the material besides certain, 

symmetric conditions, are postulated. This equation, therefore, 

is certainly valid (in the same sense of strength of materials) 

for the elastic symmetrices Involved in the orthotropic thin- 

walled open section beam characterized earlier. For such a 

beam, with G^ as the pertinent shear modulus, 

~t~zx ^zx Gsh (7.3) 

so that 

- Q = K A (7.4) 
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where egh is the shear strain at the center of the flange, x=0, 

given by 

(7.6) 

In Eq.(7..2) all others being previously defined, SQ stands for 

the statical moment with respect to neutral axis. In Eq.(7.4) 

K is the shear coefficient which depends upon the shape of the 

cross section and is given by 

(7.6) 

There is ho difference between Eqs.(7.l) and (7.4) and 

the corresponding equations in the isotropic case i.e., Eqs.(4.4) 

and (4.7) of Chapter IV, except for the modulii E and G stan- 
zz zx 

ding for E and G. One can therefore avoid all the transforma¬ 

tion and proceed directly to derive the frequency equation. 

Following the procedure in Chapter IV, the equations of 

motion can be now written for torsional vibrations of orthotropic 

thin-walled beams of open section as: 

(7.7) 

and and 

(7.8) 

Eliminating ^between Eqs.(7.7) and (7.8) a single equa- 

tion^f may be obtained as: 



2U3 

E I _C 
s a + e o ±1 _ . f«A . 

K A~G zz w 
L i zx __ az4 

r — + —?—=• +-=■— 

- V^zx K Af 2 
l 

dz^dt2 

-GO 
zx B 

dz 
+ Pi i!g + 

at* K A-G 
I zx at 

- 0 (7.9) 

For a wave-form eolation in long beams, consider a sinu¬ 

soidal wave, 

0 
(z-C t) 

(7.10) 

propagating along the beam. In Eq.(7.10), 6± ±B the wave num- 

er , y\.being the wavelength, the phase velocity for 

torsional waves, and t is the time. 

Substituting 0 from Eq.(7.10) into Eq.(7.9), the fre¬ 

quency equation for torsional waves is obtained as 

P C 4 
(-£) - 

K C_ 

+ 
fl, E 

-l-l(^a) 

ZX 
0 (7.11) 

where Cg \ ^ shear wave velocity. Eq.(7.n) 

determines the phase velocities of the torsional wave propaga. 

tion in an orthotropic thin-walled open section beam. 

Two cases of interest can be deduced from Eq.(7.ll) as 

follows: 



204 

(i) Neglecting shear deformation, by letting K*-* » 

frequency Eq.(7.li) reduces to: 

the 

V i,(VA {■ 

Ip+ 2*2 If(h/A)2 
(7.12) 

Bq.(7.12) therefore is the frequency equation which includes the 

warping and longitudinal inertia effects of the cross section. 

2; Regleoting longitudinal inertia and shear deformation, 

by letting P If = 0, K - « , the frequency equation (V-11) redu- 

oes to: 

2 

V 2,2 (7.13) 

whioh is the frequency equation including the effect of warping 

only and represents the Timoshenko tortion theory (32). 

Returning now to the general Eq.(7.1l) which includes 

both the second order effects, it may written in an alternative 

form as: 

C 4 

- 

a + B + )2 
3 "3 £^2 h ' 

C 2 

(o£) 
C2 

<£>8 = 0 

where 

*3 = EZ/G zx 

P3 = J [ °8+ (1/2) K'Afh2 J 

(7.14) 

I 

(7.15) 

(7.16) 
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ty/it (7.17) 

and 

fe " °A (7.18) 

Eq.(7.14) gives rise to to two modes of wave transmis¬ 

sion. The new mode can be explained to arise from the coupled 

interaction of the torsional deformation with the bending effects 

of shear deformation and longitudinal inertia. The phase velo¬ 

cities for the two modes are given by Eq.(7.14) as: 

1 /o 

(7.19) 

where the minus sign is taken for the first mode. 

Eq.(7.19) defines the phase velooity as a function of 

the shape of the cross section. At very large wave lengths the 

results for the lower mode obtained from Eq.(7.19) will agree 

with those from previous theories. This is obvious because 

the deformation associated with long wave lengths is primarily 

that of rotation of the cross section with essentially no warp¬ 

ing, no shear deformation and hence no dispersion. The impro¬ 

ved theory due to Aggarwal and Cranch ( 1+ ) displays finite 

wave velocity C_ VTL for very short wavelengths as against the 
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infinite wave velocities predicted by Timoshenko torsion theory 

and low wave velocities predicted by Saint-Venant torsion theory. 

From Eq.(7.16) which defines Pg, it may be observed 

that for short wave lengths, the torsional stiffness effect is 

very small and the shear distortion of the flanges contributes 

more. The present analysis gives satisfactory results for wave 

lengths -A. > tw for the first mode and this coincides in the 

second mode with the form of the exact theory for circular cylin¬ 

drical bars. The range of applicability of the first mode, 

V glves a wave length spectrum which includes moderately 

short waves and high frequencies, and as such covers a range of 

practical interest. As an example, for the beam for which 

b/h = 0.75, tf/h = 0.050 and t^h = 0.040 the theory is valid 

for wave lengths h/X < 25. 

Despite the fact that Eq.(7,19) has a form identical 

with that given by Aggarwal and Cranch ( 4) for isotropic beams, 

there is a basic difference between the two equations. It con¬ 

sists in that, for isotropic bodies, the value of poisson’s 

ratio ranges (at least in principle) from 0 to 0.5, so that the 

value of E/G in Eq.(7.19) falls between 2 and 3. On the other 

hand for anisotropic materials the values of E^G^ may be one 

and possibly even two orders of magnitude higher. So much so, 

both the corrections due to shear deformation, and the correc¬ 

tions for longitudinal inertia and shear deformation together, 

may become several times greater for anisotropic beams than they 

are for isotropic beams. 

4 I 
r#k ! 

• m 
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Table 7.1. Values of a^ for various matorialp. 

Material 

Isotropy 

Orthotropy II 

Orthotropy I 

Transverse Isotropy 

2.6 

13.9 

17.1 

35.0 

(Average of the range 20-50) 

The values of a^(- Ezz/Gzx) for three types of anisotro¬ 

pic materials considered in this Chapter are given in Table 7.1. 

For an isotropic material the value of a is taken as 2.6. 

7.3. RESULTS AMD DISCUSSION: 

Figs.7.1 to 7.8 show, the phase velocities for torsional 

waves in four wide-flanged I-beams which cover the practical 

range, having dimensions such as: 

(1) yh=0.25, tf/h=0.025, tyhO.020 (Pigs.7.1 and 7.2) 

(2) yh=0.50, tf/h=0.040, tyhO.025 (Figs.7.3 and 7.4) 

(3) bj/h=0.76, t£/h=0.050, tw/h=0.040 (Figs.7.6 and 7.6) 

(4) yh=1.00, tf/h=0.10 , tyh^O.050 (Figs.7.7 and 7.8) 

Of isotropic and three types of anisotropic materials having valu 

of ag, 2.6 (isotropic), 13.9 (orthotropy II), 17.1 (orthotrdpy I) 

and 35.0 (transverse isotropy). Figs.7.1, 7.3, 7.5 and 7.7 gives 

the results corresponding to the first mode for various values of 
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a.j for the four beams. 

In drawing the graphs, the value of k' wrb taken as 

71 /l2. The phase velocities corresponding to the second mode 

for all values of a3 can be observed, from Pigs.7.2, 7.4, 7.6 

and 7.8 for the four beams considered here, to decrease from 

infinite values for the longest waves to the beam velocity for 

the shortest waves. 

The results for phase velocities obtained from Timo¬ 

shenko torsion theory (Eq.7.13), the theory including warping 

and longitudinal inertia (Eq.7.12), and the theory including 

warping, longitudinal inertia and shear deformation (Eq.7.19) 

are compared in Pig.7.1 for beam (l) defined above, for .the four 

values of a3 considered in this work. In all cases the values 

of the phase velocities increase with increasing values of a^. 

Prom Pig.7.1, it can be observed that, at lower values 

of h/x , the phase velocities from Eq.(7.19), increase consi¬ 

derably with increasing values of a^f but differ only slightly 

for different values of a at higher values of h/?\. . The va¬ 

lues obtained from Eqs.(7.12) and (7.13) differ greatly at lower 

values of 5^- 2.6) but differ slightly for higher values of a_. 
3 

Beoause of the above, it oan bo soon, that the percentage of in¬ 

fluence of both longitudinal and shear deformation on the tor¬ 

sional wave propagation may increase drastically for increasing 

values of-EC i.e., E /G . 
3 zz zx 

Por example, for beam (l), for h/A = 0.4 and cL= 2.6 
3 

(isotropio) the percentage influence of both longitudinal inertia 
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and shear deformation is, percent and, that of longi¬ 

tudinal inertia alone is, 4 percent. But these ■values 

change drastically for anisotropic member and, for instance, for 

h/A_ = 0.4 and 5^ = 35.0 (transverse isotropy), the percentage 

influence of both longitudinal inertia and shear deformation for 

the first mode, is as high as 6ls~ 61 percent and that of longi¬ 

tudinal inertia alone is 4.7 percent. Hencef it can be con¬ 

cluded that for some anisotropic materials* the corrections due 

to longitudinal inertia and shear deformation may be of one or¬ 

der of magnitude greater than the corrections in the isotropic 
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elastic foundation including the effects of longitudinal iner¬ 

tia and shear deformation. The coupled differential equations 

in angle of twist and warping angle governing the motion of 

the short thin-walled beam in torsion are derived utilizing 

Hamilton's principle. Hew frequency and normal mode equations 

which include the effects of tirae-invarient axial compressive 

load and elastic foundation are derived for various simple end 

conditions. The effects of axial load and elastic foundation, 

in combination with the second order influences, on the tors¬ 

ional frequencies and buckling loads are discussed for the case 

of a simply supported beam. 

HERIVATIOW Off COUPLED EQUATIONS OF MOTION INCLUDING AXIAI> 

.LOAD AMD ELASTIC POUWDATIOU: 

The strain energy U4 daaSfe) the Winkler-type elastic 

foundation is given by: 

(0,1) 
0 

Utilizing Eqs.(4.12) and (8.1), the total strain energy 

U at any instant t, including the effect of Winkler-type elas- 

tio foundation can be written as: 

U = V V U3+ U4 

+ 2 k'a{Q( | M my)2 + Kt(0)2 du (0.8) 



The potential energy, W, due to the time-invariant 

axial compressive load P is given by: 

» - § / % < )2 d, 
. * o A az 

The total kinetic energy at time t is 

V 2 f 
o p at 

which is same as Eq.(4.l3). 

+ 2 Pi,(-221) 
u,2 

at 
dz 

(8.3) 

(8.4) 

If T^U and W from Eqs.(8.4),- (8.2) and (8.3) are sub¬ 

stituted into Eq.(2.1), and variations taken, and after integ¬ 

rating the first two terms by parts with respect to t and next 

five terms with respect to z, we obtain: 

t. L 
f1 f 
% 0 

{ (8V * K V»<! > 3 A 1 2 az2 az 

- V “Pin ^ 
P os 

60 + <r a8&> 
2 El 7* - 8 ?If 

1 0Z2 r at2 

+ 2 K*AfG(| 6^ dz dt 

+ / ( f I 50 + 2 fl. 6 
dt at 

^) dz 

t, 
- f1 

% 

+ 2 EIf 6y dt = 0 (8.5) 
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Assuming that the values of 0 and^ are given at the 

two fixed instants, the second integral vanishes. If the bou¬ 

ndary conditions are such that the third integral also vanishes 

then we obtain the two coupled equations of motion as: 

<0V Vs) 0 - M- PI. - 
2 9z2 az 7 ^ 9 2 

and 

EIf 7?+ *V<t T2 - V) - Pi, & = o 
^ 6Z f at2 

0 

(8.6) 

(8.7) 

8*3. NATURAL BQUITOAflY 00101110113; 

In deriving the coupled equations (8.6) and (8.7) from 

(8.5) it was assumed that the expression 

t 
(GV "aE) ^ + K'Af&h(| & - ?r) 

dz ¥ + 2 El- 6^> 
9Z 

vanishes at the ends z=0 and z=I. This condition is satisfied 

if at the two ends. 

Eqs.ta.e) ana (0.9) eive the natural boundary conditions for the 

finite bar. Except for the caee of a free end, the boundary 

conditions for sinply supported and fixed ends remain the same 

ae those given by Eqa.(4.19) and (4.80). 
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For the case of a ''free end'1, the natural boundary 

conditions for the present problem become: 

j ~ °> aaA (GCg-+ K AfGh (| - V) = 0 (8.10) 

' \ -. j 

, 1-t can "be observed that the difference between Eqs.(8.10) 

and (4.Si) for the oase of the free end io due to the presence 

of the axial compressive load, F, acting at the shear-center 

(or centroid) of the beam. 

8.4.1. SINGLE EQUATION IN ANGLE OF TWIST: 

Eliminating ^between the coupled Equations (8.6) and 

(8.7), a single equation of motion in angle of twist 0 may be 

obtained as: 

EIfC PI El- 
■4-2 + EC_2_f 

w F^f K AfGA $ 

E f I I 
TJIf + C8 P Tf + _ 

K A^G K A. K AjGA 

34 Jt 

3z2 3t2 

3 K AfG 

PI 
_ 

A 
3-r2 P K AfG at2 

rip p xf a4<* 
+ I P - -J + K. 0 » 0 

K AfG at4 ^ (8,11) 

Eq.(8.11) is the linear partial differential equation 

of fourth order governing the torsional vibrations and stability 

I 
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•yj 

'B 

of a thin-walled beam resting on continuous elastic foundation. 

8.4.1. ANALYSIS OF VARIOUS TERMS; 
V 

(i) Letting Cw = Pl^ = 0 and K = Eq.(8.1l) reduces to: 

(GV “A^ % - pip -S “ V " 0 (8.12) p Hr‘ 

Bq.(8.12) represents the governing differential equation- 

of motion for the torsional vibrations and stability of a beam 

resting on continuous elastic foundation, based on Saint Venant 

torsion theory and does not include^ the effects of warping, 

longitudinal inertia and shear deformation. 

(ii) If Cw = 0 and k'- », then Eq.(8.1l) becomes: 

(GO _ fi) + JV*2 
3 A 7 O O r', 

‘ ' PIp 'p - V - 0 (8-13) 
sh.. 

Eq.(8.13) represents the equation of motion based on 

Love•s torsion theory and includes the effect of longitudinal 

inertia, 

(lil) If ( Ij ® 0 and K Bq.(Q.ll) reduces to: 

ECw £ - <«>.- $ + V + PIP 0 ■ 8 

M 

■ etU 

(8.14) ... 

Eq. (8.14) is the governing differential oquation of mo¬ 

tion based on Timoshenko torsion theory which includes the ef¬ 

fect of warping and neglects longitudinal inertia and shear de¬ 

formation. It must be recalled that this equation is same as 



Eq.(2.6) which is completely solved in Chapter II for various 

end conditions of the beam. 

(iv) If K -* Eq.(8.1l) becomes? 

EC 
"w a_4 2 a 2; 

V az2at2 
0 

(8.10) 
Eq.(8.15) represents the governing differential equation 

of motion including the effects of warping and longitudinal in¬ 

ertia but neglecting the effect of shear deformation. 

(v) If Pl^ = 0, Eq.(8.1l) reduces to: 

Ff°s —V 8 + EC - 
Ik a, w 

pyif 

k'AjQA 

B(,Vf a*a 
K AfO 6z88t8 

(8.16) 

Eq.(8.16) is the equation of motion including the effects 

of warping and shear deformation but neglecting the effect of Ion. 

gitudinal inertia. 

8.5. NON-DIMENSIONALIZATION AMD GENERAL SOLUTION: 

Eliminating 0 in Eqs.(8.6) and (8.7) we obtain the com¬ 

plete differential equation in warping angle V as! 



V A a* p k AjO at5 

Pl_Pl* a4r, 

+ -■ 7P ^ •£& + 
£^T* t^tK^ = ° (8.17) 

Subetltutlng Eqa.(4.30) to (4.32) and omitting the faotor 

• • EV.(8.6), (8.7), (8.11) ana (8.l7) «, r9dtt0ed t#, 

a2)-«l 
_f » 

* + 82(X2- dV2)0 - (gL/h)$>% = 0 

‘ 

s8 ^ - (1- >vVa2)£ t (h/2l) 5' . 0 

,-lv 

(8.18) 

(8.19) 

Cs^K2-^2),!]^ Cx2 a2d2+A2(l-AVd2)^(A2. ^ * 

- (>.S-4V2) (1- X2s2d2) jj - o (8.80) 

f82(K2- A2)+ ij ^ v+ ^x2a2d2+ ^(i_ X2s2d2)+ e2( ^2_ 4 j 2)J ’ 

( X2- 4 92) (1- X2a2d2)^ = o (8.21) 

where primes denote differentiation with respect to Z. 

as: 
Iha general eolation of Eqs.(8.20) and (8.21) 0an be found 

f V 

* **{ 
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* " Bl°00h “3Z+ B2sinh “3Z + V03 P3Z + B4=i» (e.BS. 

•y - BjStnh a3z + BgOOsh «3Z + Bjsln ^z * B^oos »3Z (0.23) 

where 

a_ 

; ,!U*. 4i2)] P3 rs[e2(K2- aB)+ 1 f7s 

* [xVd2* a2(i- xW). s2(a2. 4/>j\ 4(^_ 4v2) 

and 

|[)?.2424A2(1. A2.2.2)- Jt(#_ 44>2)]e+ 1( X®. 4V2)jlA 

> [>v2a2d2+A2 (l-A2s2d2) + 8s (A2- 4V2) J 

is assumed, 

in cage 

0A 2+A2(l- A2s242)- ,b( a2- tl B)]S+ 4U2- 43> 2)11/2 

< [A!jV(l-AW)*,* CA2-4V,2)1 

we write 

ft[s2(K2- **)+ 4 jl/* 1 A»2a2+A2(l- X2o2a2)+ e2(x2- 4} 2)1 

L A 

[AV^d-AV). .2(x2- 4V2)]8. 4(A2- 4^2)11/2^1/S 

i a„ 
(8.25) 



Then Eqs.(8.22) and (8.23) are replaced by 

* ' Voa V «,2 + Bjooa P3Z + B4sta pjZ (S,8J) 

^ - »(•!» «’z + BgCos cijZ + ?32 + B^oos P,z (s.87) 

Solutions of Eqs.(8.22) and (8.23) or (8.26) and (8.27) 

are naturally the solutions of the original coupled equations 

(8.6) and (8.7). 

Only one half of the constants in Eqs.(8.22) and (8.23) 

are independent. They are related by Eqs.(8.6) and (8.7) as fol 

Iowa: 

\ ^ [ i- »2 («; ♦****> jB; 

®8 * Sg t1-8^8! *A!) ]Bj 

v - 5-[** ***-K 
3 

- fj- [i+ ] B; 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

or 

B„ 

BS - 

ns; GU 

«3 

_» h . 

3 

s8(K?- i$) + 1 

s2(k2- a2) + i 

s2(k2- zi2) + i 

+ 4V8)’fB1 (8.38) 

+ a2(A2 - 4* 2)j Bg (8.33) 

- s2(A2- 4^2)b3 (8.34) 
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e2(K2-A2) + 1 - b2(A2- 42P2) B4 (8.30) 

8.6. FREQUENCY OR BUCKLING LOAD EQUATIONS AJCD MODAL FUNCTIONS; 

In section 8.3, natural boundary conditions for the pre¬ 

sent problem are dlsoussefl. by combining these oondltions in pairs 

many types of single-span beams can bo analyzed. In terms of non- 

dimenslonal parameters, the boundary conditions for a "free end" 

can be written as: 

(8.36) 

The application of appropriate boundary conditions (4.56), 

(4.57) and (8.36) and, relations of integration constants (8.28) 

to (8.35) to Eqs.(8.22) and (8.23) yields for each type of beam a 

set of four constants B^ to with or without primes. In order 

that solutions other than zero may exist the determinant of fthe 

coefficients of B s must be equal to zero. This leads to the fre¬ 

quency equations in eaoh case and the roots of these frequency or 

buckling load equations, i - 1,2,3,...n, or A2 , giTe the 

eigen values of the problem. The corresponding modal functions, 

and ^ oan be obtained accordingly. 

8.6.1. SIMPLY SUPPORTED BEAM; 

The boundary conditions for a beam simply supported at both 

ends are: 
I 

0 = If* = 0 at Z = 0 
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and 
^ I 

^ * ^ => 0 at Z = 1 

• * »i|' 

■ 
,;„ * *4 Vi- 

.’ -hi* For the boundary conditions at Z = 0, Eqs.(8.28) and 
* :r ;• 

(8.23) give: i 

B1 + B3 = 0 (8.37) /I 

[«§ [ ^(K2-^2) + l] + s2( \2- 4 y2) ^ 

^3 [s2(K2-A2) + lj- s2(A2- 4^2) | B3 = O (8.38) 

-'.I* 
v 

;.v«i 

Since the secular determinant, ie., 

[ s2(K2-A2) + 1 J i a2+ P2) ^ b, :v 

therefore it follows that B., = B„= 0. 
1 3 (8.39) 

For the second pair of conditions at Z = 1, Eqs.(8.22) 

and (8.23) give: 

'I j 

Bg sinh o3+ B4 sin p^a 0 
(8.40) 1 • ' 

and 
■ '+t' ■, 

£<X2 [s2(K2-A2) + l]+ s2(>s2- 4>>2) 

K? 

Bg sinh a3 

[b^-A2). lj. 8S( A2- 4S" 2) J B4.i» p3. 0 (8.41) 

♦ 

'*?• -1 

For a non-trivial solution, the secular determinant must 

vanish. This gives the charaoterestic equation: 

[s (k8-‘^2)+ l] (a2 + p2) ginh a3 sin P3 = 0 (8.42) 

'if 
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SUioe [ sW-A2) + 1 j (a® + P*) / 0 

and 

“3 / 0» 

From Eq.(8.48) w® hav® 

ft, - nit, n - 1,8,3,.... 

»>: • »S.$j 

(8.43 

whloh laads to the main solution of the problem. 

Letting ** n2^2 in Eq.(8.24), the frequency equation in /)y2 ia 

obtained as: 

•V i + n2*2 [a2+ a2+ .W-42)]. 4 „2a2^2| 

+ j’l4*4 js2(X£-i 2)+ l"|+ ipi£(K2, a2)+ 4 P,S(1+ n2Ti2a2)J 

This equation gives two real positive roots: 

= 0 

(8.44 

X 
mn° 2tt* 1+ n2nzJ s2+ d2+ sVO^-A2) f + 4s2d2y 2 

m 
+(-l) o 

V. 

1+ n2it2£s2-d2.-s2d2(K2-.£2)j -4s2d2^ 2 h 4n2ito^2 

(8.451 

This frequency equation (8.45) in >^2, has an infinite 

ber of roots which in general represent two coupled frequency sps 

otra. 

Using Eqs.(8.43), (8.40) and (8.4l), one gets: 

b2 = 0 (8.4£j 
I 
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The modal functions are obtained from Eqs.(4.22) and 

(4*23) with B 0 glvan by Eqs.(8.39) and (8.46)• Thoge are given 

as t 

*nn " 8in n7tZ (8.47) 

Vmn " 2%k ^nVpOC2-A2)+ lj-s2^2^- 4^>2) |cos n%Z 

(8.48) 

where /\ ^ being given by (8.45). 

The second spectrum appears at higher frequencies, grea¬ 

ter than the oritioal frequency /\ given by 

Ag = l/s2d2 

and is due to interaction between shear deformation and longi¬ 

tudinal inertia. It should be mentioned here that for the range 

of values of the dimensionless parameters covered in this chapter, 

A is less than /\ * 
c 

For the case, A > X Q> it is convenient to use a, » lal 
u o o 

and, the characterestic frequency equation (8.42) transforms to: 

sin a3 sin P3 = 0 (8.49) 

Hence, in oase there is any extension from there on for 

beyond is., A s 4 )1, care should be taken to aocount for 

the frequencies of the second spectrum which can be obtained from 

Eq.(8.49). 

By putting s2=> d2= 0, in Eq.(8.44), the equation for the 

the frequency parameter > , neglecting the effects of shear defor- 
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mation and longitudinal inertia, can be obtained as? 

y » n2w2(n2n2+ K2-^2) +4>*2 

wMoh is the same as Eq.(2.47) derived in Chaptor-II utilizing 

Timoshenko torsion theory. 

glxrep-H'TTpun 

For a beam clamped at both ends, the boundary conditions 

I 

0 =» ■ 0 at Z = 0 

* 0 = = 0 at Z «* 1. 

Applying the above boundary conditions to the general 

solutions, Eqs.(8.22) and (8.23), the frequency equation, for the 

first set ( <^ < X Q) can be obtained ass 

2 P 

O (1- 6,0 
2-2 cosh a3 cos P3 + ——A l. sinh a, sin (3 = 0 

0^9^ d o 

where 

6i - Vi 
I . ■ 

and 

e ffig2(K2-^2)+ l|- sg(Ag- 4V2) 

1 “2|s2(k2-/12)+ i|+ s2( x2- 4a 2) 

The frequency equation for the second set ( A > A ) is: 
c 

(8.51) 

(8.52) 

(8.53) 

8.6.2. 

are: 

and 

(8.50) 
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„ . <i+ fyp ' ■ 
2-2 cog oc, oos P,+ —-gin a„ sin P_ = 0 

6„0 
2 2 

where 

and 

62 = “3 / P3 

[a2(K2-^8)+l] - s2( A2- 4^2) 

a2 |s2(K2-A2)+ 1 | - s2( A2- 4^2) 

(Ehe modal functions for the first set are given by: 

0 * D(oosh a3Z + 6^* e1 sinh a3Z - oos PjZ+ojJ sin ^Z) 

Ml 
= H(cosh oCgZ-K-^ Q sinh a3Z- oos PjZ+Z^sin PgZ) 

1 1 » 

where 

*L 
r cosh a3 + cos P3 

^Sj^sihh a3- sin P3 

- cosh gg+ oos Pg 

(l/^Q^sinh a3+ sin P3 

The modal functions for the second set are: 

- t * * 

0 - D(cos a3Z - 62^2 9g sin cx3Z - cos sin ^Z) 

■» 
•v ^ 

^ » H(cos a3Z * sin a3Z - oos PgZ +/<■ g sin ^Z) 
2 2 

where 

oos - “•* - cos fL *1 m -2-—y-2- 
2 6Z0S sin a + sin p„ 

(8.64) 

(8.56) 

(8.66) 

(8.67) 

(8.68) 

(8.59) 

(8.60) 

(8.61) 

(8.62) 

(8.63) 
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* — cosh a, + cos ft* 
A*. a -3-5-£ 

7 2 (l/6g0g)sin <3+ sin P3 

Since the coefficients in 0 and of Eqs.(8.22) and 

(8.23) are related, the coefficients D and H, that appear in the 

modalJCUnotions given above* are connected through any one of the 

Eqs.(8.28) to (8.3l) or (8.32) to (8.30). 

8.6.3. BEAM FIXED AT ONE EHD AND SIMPLY SUPPORTED AT THE OTHER: 

With the end Z = 0, taken as clamped end, and with the 

end Z = 1 as the simply supported end, the boundary conditions 

are: 

0 a y = 0 at Z = 0 

and 

0 = 'y = 0 at Z = 1 
' \ 

I . ■ » 

The frequency equation obtained from applying the above 

boundary condition to the general solutions, Eqs.(8.22) and (8.23 j 

for the flret set (A < Aq) is given by: 

6^9^ tanh a3- tan P3 “ 0 (8.63 
l I 

The frequency equation for the seoond set ("A > \Q) is: 

6g6g tan 0^ + tan P3 = 0 (8.66 

The modal functions for the first set are given by: 

0 = D(Cosh ctgZ-ooth <*3 sinh a3Z - cos PjZ+cot P3 sin ftjZ) 

* 
u , * 

V1 » H(oosh a3Z+ sinh a3Z-cos P3Z+/*3 sin P3Z) 

161 

(8.67) 

(8.68) 

(8.64) 

I 
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* wher« 
f <k,: 

“ (\sinh a3+ nin Pa) 

&/\) cosh a3+ cos 

0?he modal functions for the second set are: 

„ ' di 

Vi F | 

(8.69) 

^ a D(cos otjjZ - cot a3 gin a3Z - cog pgZ + cot P3 gin ^z) (8.70) 

(8.71) 
r - H(cog a3z - -^L gin a3Z - cog PgZ +^3 sln P3z) 

6292 

where 

* 

n 3 
S2 8ln °4 ~ ^ ft. 

' 0*1 

cog a3+ cog P3 (8.72) 

8-6*4- CANTILEVER BEAM WITH DTO fftm F] 
-FREE AT THE OTHER ♦ 

For a cantilever beam built in rigidly at the end Z - 0 

so that warping is completely prevented, and with a free end at 

Z “ 1» the boundary conditions are: 

0=^=0 at z = 0 
and 

t 

r |V<KS-*2H ! j t . (21A)^ . o .t'j . 1. 

frequency equation for the first set, in this eaee, 

can be obtained as: 

o2> 
(l+®f) (1- 62) 

+ ~ °',3i “3 °°a ^ ~8lnh “3 8l” "3 * 0 (a.V») 

.'I 



The frequency equation for the second set is given by: 

+ iilSi MB «' „os t> - sin «, sin P3 - 0 (8.74) 
(1+ <£) 

The modal functions for the first set are: 

* * 
0 = D(Cosh a3Z - S101,l4 sinh 0CgZ - oos P3Z+^ sin ^3^ (8.76) 

V 

where 

/< * 
H(cosh <XgZ+ —— sin h ctgZ - cos PgZ +' 4 sin P3Z) 

6iei 

’l 

(l/^) ainh «3- sin 

O^cosh ag + oos Pg 

(8.76) 

(5.77) 

A 
* (6^ ainh ag+ sin Pg) 

4 (l/9^)oosh ag+ oos Pg 
(8.78) 

The modal functions for the second set are! 

*3“ ' u2uS'l6 bxu “3" " u”° l5 
# 

M- 5 

1*1 *■ 
0 *= D(oos a_Z+ 6_0„?J_ s^n a3Z “ 000 ^3Z+I?^5 S^J1 ^3^ 

‘y = H(cos ttgZ —— sin otgZ — cos PgZ g sin PgZ) 

°292 

where 

T 

A 

(l/fig) sin a3 - sin Pg 
~ ~ y 

0g cos ag + cos Pg 

6g Bin gg - sin Pg 

6 (l/0o)cos a,+ cos P„ 

(8.79) 

(8.80) 

(8.81) 

(8.82) 
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8-6-6. CANTILEVER BEAM WITH ORE END SIMPLY SUPPORTED AND FREE AT 

THE OTHER; 

For a cantilever beam simply supported at the end Z = 0 

and free at Z =* 1, the boundary oonditiona are: 

(*=^=0 at Z = 0, 

and 

V “ 0» L b2(K2-a2) + 1 ] 0 - (2L/h)^> = 0 at Z = 1. 

The frequency equation for the first set, in this case 

becomes! 

? 

61 taJlh a3 - 63. tan P3 = 0 (8.83) 

The frequency equation for the second set is given by: 

62 tan ag + 0g tan P3 = 0 (8.84) 

The modal functions for the first set are! 

6l 008 
±rr sinh a3z + sin hz (B.es) 

sin b, 
"ty ~ “- cosh a_Z + cos P„Z 

^ sinh ctg 3 3 (8.86) 

The modal functions for the second set can be obtained as! 

f 62OOS P3 
i 

COS Ctg 

I 
sin ctgZ + sin e3z 

Sln ^ 

Sgsin ag 

I 
COS OCgZ + COS PgZ 

r 

(8.87) 

(8.88) 

„ Of, ,.*■ 
- I 
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a’6*6* smjrm free WPS: 

t0UM 1,1 th‘ °°8e °f * bM“ 1. 1*. at both 
boundary oonditiong are: 

ends, the 

_ • 

and 

V -o, oai>L 

r;fre5uenc7 s’uatiM ** «. ta thl„ caae car be obtained as: 

*-2 oosh a3 oob p + lirii ^ 

3 \ 91 8inh “3 “ 0 (8.89) 

The frequency equation for +hQ 
the 8econd set is given by: 

2-2 cos a’ oos 0_ + 192+5I} . . 
3 ^ sina3eln,3=0 (8>9o) 

"°“ r°t10"8 ^ «“ «»* - - >* obtained aa: 

■ »<«* V *1. tjBlnh V+(l/el)cos sla 

£ “ H(oosh a Z - h < u 
3^ * Y 8lnh «„Z +0,co8 0 7 + ('i 

61 3 18 P3Z + (l/’2g)sin P3Z)C8.92) 

7 * COsh S- cos ft, 

6lSinh «3- Gl8ln e (8.93) 

where 
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The modal function for the second set are given by: 

? - B(oo» «;Z - 6/^am a'^+d/o^, %l) (8-M) 

H<0C’S “ (/VV«1" “3*+ V°« am psa)ca.96) 

where 

/l* « - fiS g3 ~ 008 ^ 

6 62 sln a3+ e2sJjl P3 (8.96) 

8’7* A^OXD^TE SOLUTIONS BY GAXTCRKPT'fl Tmr.mrr^. 

Except for the simply supported beam, the frequency equa¬ 

tions for other>boundary conditions derived in the section (8.6) 

can be observed to be highly transcendental and are solved on a 

digital computer only by lengthy trial-and-error method. An at¬ 

tempt has been made in this section to derive approximate expres- 

slona for the torsional frequencies and buokling loads of fixed- 

xed beam and of a beam fixed at one end and simply supported al 

the other, utilizing me Galerkin's technique. 

8‘7*1* EIXED-ffiXED BE AM; 

To satisfy the boundary conditions in this oase, the nor- 

mal function of angle of twist 5 can be assumed In the form 

«. oo 

^ " ni. Bn(l" 008 2 nnZ) (8.97) 

Substituting Eq.(8.97) in the differential Equation 

(8.20) and using the Galerkin's technique, expression for the 
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o 

)j frequency parameter X , in this oan be obtained as: 

3 X4s2d2- X2 j S-t^n2*2^ a2+ d2+ s2d2(K2-^2) J+ 12 B2d2^2J 

+ 16 n4n4[ s2(K2-a2)+ lj+ 4n2rc2(K2- A2)+ 4^ 2(3+4n2n2s2 )J ■ 

(8.98! 

®qe(a1(08) gives two recil pooifcivo roots given by 
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If the effects of longitudinal inertia ana shear de¬ 

formation are neglected, ie., s2= d2= 0, Eq.(8.98) yields: 

)l/2 
A » 2 [(n2ii2/3)(4 n2*2+ K2-a2)+V2J ' (8.10B) 

which is same as Eq.(2.73). 

8«7.2. BEAM FIXED AT ONE END AMD SIMPLY SUPPORTED AT THE OTHER: 

To satisfy the boundary conditions in this case, the nor¬ 

mal function of angle of twist 0 can be taken as: 

0 - £ Dn(cos ~ Z - cos Z) 
n=l 

(8.103) 

Substituting Eq. (8.103) in the differential Equation 

(8.20) and using the (ralorkin's teohnique, the expression for 

the frequency parameter A2, in this case can be obtained as: 

16 A4a2d2-A2 |l6tB0 n2n2[ s2+d2+s2d2(K2-A 2)j + 64 a2d2V 

+ ° 41 n4Tt4j^s2(K2-^2)+ 1 J+ 20 n2n2(K2-A2)+ 16 tf2(4+5 n27t2a2)|’- ! 

(8.104) 

From Eq, (8.104) we have 

2 * 
mn 

16 
"jf j^l6+20n2it2[s2+d2+s2d2(K2-A2)j+64 s2d2V 

+ (-1) |j^l6+20n27t2^s2+d2fs2d2(K2-A2)J+64 s2d2V 2 1 

- 64 s2d2l 41n4it4[s2(K2-A2)+ 1 J+ 20 n2n2(K2-A 2) 

1/2 

+ 16 9 2(4+ 5 t?t?bZ) (8.106) 

!l«i 
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For a team not vibrating, ie.t/\ = 0, and the expres¬ 

sion for the buckling load can be obtained from Eq.(8.104) as? 

A or - K8 + E.OP n4+ 0,3>)g(4+6 w8a8) 

n^Cl+a .00 n2a2) 
(8.106) 

If the effect of shear deformation is neglected, ie., 

s2“ 0, Bq.(8.106) reduoes to: 

' " a 8*06 ^ ft0+ (»-sA9)^ 8 (8.109) 

which is same as Eq.(2.77) derived by utilizing Timoshenko tor¬ 

sion theory. 

If the effeots of longitudinal inertia and shoar defor¬ 

mation are neglected, ie., s2= d2= 0, Eq.(8.104) yields: 

X = [ 1.25 ^^(2.05 n2rc2+ K2-,^2) + 4^2|1^8 (8.108) 

which is same as Eq.(2.76). 

8.8. LIMITING CONDITIONS: 

The limiting conditions at which the combined influence 

of the axial oompressive load and elastic foundation on the tor¬ 

sional frequency becomes zero, for some cases are as follows: 

(l) S.lmply-Supported Beam: 

From Eq.(8.44) wo get two limiting conditions in this 

onso. They are: 

(a) sd 'jf =0.5 nxsA 

(b) V =0.5 nuA 

• 

(8.109) 

(8.110) 
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(2) Fixed-Fixed Beam: From Eq.(8.98) the limiting conditions 

in this case are: 

(a) sAV « nu & 

(b) V « nrc A 1+4 nVs2 

i3+4 n2n2s2 . 

1/2 

(8.111) 

(8.112) 

(3) Beam fixed at one end and Simply supported at the other: 

From Eq, (8.104) the limiting conditions in this case are: 

(a) 4 sd V = V5 rot A 

(b) N> =* 0,559 rot6 1+2.05 n2lt2sg 

1+1.25 n2*2s2 

1/2 
(8.113) 

(8.114) 

I£,i.the effect of shear deformation is neglected, ie., 

s^= 0, Bqs.(8.112) and (8.114) reduces to Eqs.(2.79) and (2.80) 

derived previously. 

For the above relations in various cases between ^ and A 

there will be no influence of axial load and elastic founda¬ 

tion on the torsional frequency of vibration. This can be 

observed to be due to the opposite nature of their individual 

effects and these individual effects get nullified at these 

limiting conditions for various cases. 
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8.9. RESULTS AND CONCLUSIONS; 

In this seotion, the results obtained on IBM 1130 Computer 

are presented in Tables 8.1 to 8.16 to»show the effects of vari¬ 

ous non-dimensional parameters on the buckling loads and torsional 

frequencies of simply supported, clamped-clamped and clamped- 

simply supported beams resting on elastic foundation. Extensive 

design data ^ made available in these tables. The main inte¬ 

rest is to find the influences of shear deformation and longitu¬ 

dinal inertia on the frequencies of vibration of a short thin- 

walled beam resting on aontinuoua olastio foundation and subjec¬ 

ted to an axial compressive load. 

The values of the torsional buckling load A,0for the three 

boundary conditions are given in Table 8.1 for various values of 

the warping parameter K and shear parameter s. It is well known 

that the effect of increase in the value of K is to increase the 

buckling load considerably. Prom Table 8.1, we observe that for 

any constant value of K, the effect of increase in the value of 

s is to decrease the torsional buokling load, and that this re¬ 

duction beoomes significant for values of K < 1. Also, the ef¬ 

fect of shear deformation in reducing the buckling load is com- 

paritively considerable in clamped-clamped beams than in other 

cases. 

‘S 

The results showing the combined effects of axial oompres- 

sive load, longitudinal inertia and shear deformation on the first 

four torsional frequencies (first set) are given in Tables 8.2, 

8.6 and 8.10, for values of K = 0.01 and s «* 2d. The percentage 
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reductions in.the torsional frequencies due to increase in the 

axial oomprossive load can be observed from these tables to be 

slightly higher than those when the effects are neglected. 

I 

The combined effect of elastic foundation, longitudinal 

inertia and shear deformation on the first four torsional fre¬ 

quencies (first set) are shown in Tables 8.3, 8.7 and 8.11 for 

values of K = 0.01 and s = Sd. Prom these results it oan be 

noted that the percentage increase in the torsional frequencies 

due to elastic foundation is slightly more than those when the 

second order effects are neglected. The results presented in 

ables 8.4, 8.6, 8.8, 8.9, 8.12 and 8.13 show the combined ef¬ 

fects of axial compressive load and elastic foundation in combi¬ 

nation with the effects of longitudinal inertia and shear defor¬ 

mation on the first and second, third and fourth torsional fre¬ 

quencies (first set) of simply supported, olamped-olampod and 

clamped-simply supported beams respectively. It can be obser¬ 

ved from these tables that the combined effects are almost the 

algebroic sum of the individual influences of various effects 

on the torsional frequencies of vibration. The results for the 

modifying quotients for the first four modes of vibration for 

simply-supported, clamped-clamped, and clamped-simply supported 

beams are respectively presented in Tables 8.14, 8.15 and 8.16 

for values of 8 = 0.10, d » 0.06 and for various values of A , 

V and K. Prom these results we observe that for any set of 

values of K and j , the influence of increase in the values of 

A in the range 0.0 to 3.0 is to decrease the modifying quotients 
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(±•Q•9 to increase the second order effects on the frequencies 

of vibration) for various modes by about 25 percent. For any 

constant set of values of A and K, the effect of increase in 

the values of V in the range 0 to 12 is to increase the modify¬ 

ing quotients (i.e,f to decrease the second order effects on 

the frequencies of vibration) for various modes at the most by 

15 percent. For constant values of A and ^ , the effect of in¬ 

creasing the value of K from 1.0 to 10.0 is to increase the 

modifying quotients for various modes by about 10 percent. 

It is also observed that, for constant values of K and V , 

the reduction in the frequency of vibration at the first mode 

is quite considerable for values of A nearing A . From the 

various results presented in this section, we can conclude that 

the effects of shear deformation and longitudinal inertia on 

the torsional frequencies at higher modes become increasingly 

important for a beam with smaller values of warping parameter K 

and foundation parameter ^ and for larger values of A < A 

'*■ ; f 

' ** ' ii 
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CHAPTER - IX 

FINITE CEMENT ANAIjYSIS_ OF TORSIONAL VIBRATIONS AND STABILITY 

OP_ SHORT THIN-WALLED REAMS RESTING ON CONTINUOUS ELASTIC FOUN- 

DATION! 

» 

9.1. INTRODUCTION; 
' • > i V 

The problem of torsional vibrations and stability of 

lengthy thin-walled beams of open section resting on Winkler- 

type elastic foundation is solved in Chapter III utilizing finite- 

element method. The stiffness, stability and mass matrices 

derived therein, does not include the second order effects such' 

as longitudinal inertia and shear deformation. These second or¬ 

der effects cannot be neglected in the case of short and deep 

thin-walled beams and, as is shown in Chapter 17, they drasti¬ 

cally change the torsional frequencies at higher modes of vib- 

ration. 

The present chapter, therefore, aims at extending the 

finite element method presented in Chapter III to include the 

effects of longitudinal inertia and shear deformation. New 

stiffness, stability coefficient and mass matrices for a short 

or deep thin-walled beam are developed in this Chapter, which 

include the effects of longitudinal inertia and shear deforma¬ 

tion in addition to the effects of axial time-invariant compres 

sive load and elastic foundation. The method developed herein 

* f paper by tbe author based on the results from this Charter 



264 
? 

is useful in analyzing both uniform and non-uniform beams with 
0 

any complex boundary conditions. Ihe new stiffness and stabi¬ 

lity coefficient matrices are made use of in conjunction with 

the consistent mass matrix for finding the torsional frequen¬ 

cies, buckling loads and mode shapes of short uniform thin-walled 

beams with various end conditions. Results obtained for the case 

of a simply supported beam by the finite element method are com¬ 

pared with the exact ones obtained in Chapter VIII and an excel¬ 

lent agreement is observed even for a coarse sub-division of the 

beam. 

9*2* MODIFIED STRAIN ENERGY EXPRESSION INCLUDING THE EFFECTS OP 

AX I AX LOAD AI'fD ELASTIC FOUNDATION: 

Substituting Eq.(5.1) into Eq.(8.1), the strain energy 

U4» due t0 the Winkler-type elastic foundation can be written in 

a modified form as: 

the total strain energy 

of Winkler-type elastic 

form as: 

Utilizing Eqs.(5.14) and (9.1), 

U at any instant t including tile effect 

foundation can be written in a modified 

D = V V V u4 

1 L 
= i f 

2 i 
60 dff 2 d20. L 

GC! (■— + —&) + EC (—^) 
_ 3 az " az2 

t Vi ^ ^0 2 p 
+ K Af<^ (—a) + Kt(0t+ 0g) 

dz (9.2) 
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Substituting Eq.(s.l) into Eq.(8.3) the potential energy, 

W, due to the time-invariant axial compressive load P can be wri¬ 

tten in a modified form as: 

1 L PI d0 d0 l 

W = § f -[E (-11 + _CS) 
o •• Sz dz 

dz (9.3) 

The total kinetic energy, 3?^ ;at any time t in the modified form 

is given by: 

V§{ 
d0 d0 2 d20 2 

fi_(—* + —a) + Pc (—-i) 
. p at at w dzat 

dz (9.4) 

which is same as Eq.(5.15). 

9*3. MODIFIED NATDRAX BOUHDARY CONDITIONS: 

Except for the case of a free end, the boundary condi¬ 

tions for simply supported and fixed ends remain the same as 

those given by Eqs.(5.16) and (5.17). 

For the case of a ''free end”, the modified natural 

boundary conditions for the present problem become: 

9*4, SERTVAIION of element matrices including axial load, elastic 

FOUUDAT ION and SECOND ORDER EFFECTS: 

The expressions for the strain energy U, potential energy 

W and, Kinetic energy TK>given by EqS.(9.2), (9.3) and (9.4) res¬ 

pectively, for an element of length, 1, can be written as follows: 

P- 
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* ■/ 
^ 0 

+ KV $v'A w »J dz (9.6) 

W " 2 { "T? W't+ O' dz 

and 

V§ f 
. 2 . .'2 

fyw dz 

(9.7) 

(9.8) 

Direct aubotitution of Eqo.(5.24) to (5.36) into Eqo.(9.6) 

(9.7) and (9.8) and the resulting expressions into Hamilton's pri¬ 

nciple, Eq.(3.34), yields (for the Nth element): 

5in= ^ f2 ° fl 
r -I- * 1 *t -3L . 

^ RtN ^ dz+ f ^3jf A A HsIj dz n tN A A tN 
9 o 

* l ^ jT 1 *W 

+ Tf“ { S« ^ *1 St* «= 

dz 

1 } kT 
2 £ “t& 

1 fBl 
2 JQ KsN 

ECw AgAg+ 00^+ KtATA 

(GCg+ KAfG h2/e) A^* KtATA 

5tN dz / 

RslT dz 

GO - 

IT2 { SWXlSsN dz + l KaH *1 StN dz 
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K 

} S*K ata 1 sN dz + f ATA R.,t dz 3N *• a tN 

PI. 

2A 
*T — T — r~ 1 m m 

{ StN h fitN dz + lnBV K \ 5SN dz 

+ / StK ^1 h SsN dZ + l ^ StN dz 
T ,T - 

= 0 

d + 

(9.9)' 

Eq.(9.9) can be written more concisely as follows: 

% "6/21 ( PI L) = - IN mN 5n “ (EO/L3) q* \ q^ 

-T - - 
♦ <V“> \ h \| dt = 0 (9.10) 

In Eq. (9.10) the terms ( PlpL) mN , (EOyL3)!^ and (PIp/Al)iN 

denote respectively the mass matrix the stiffhess matrix 

^N and stability coefficient matrix sN of the Nth element. The 

matrices m1T and q^ obtained herein are the same^Eqs.(5.41) and 

(5.43) respectively. The matrices \ and iJf are as follows: 

■h 

where 

*11 = 

K11 hi' 

hi 

12N2 

6N 4 
Sym. 

-12N2 -6 IT 12N2 

6N 2 -6N 

(9.11) 

■a 

1 
-■ 
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~36N2 - 

Sym. 

+ jsL 3N 4 

30N2 -36N2 -3N 36N2 

- 3N -1 -3N 4 _ 

* 

1562I2 -i 

4V2 82N 4 
Sym. 

+-_ 
420N B4N2 13N irjflN2 

-13N -3 -22N 4_ 

~ 36IT2 - 

Sym. 
K8 3N 4 

J5* -36N2 -3N 36N2 

3ff -1 -3N 4 

156N2 - 

Sym. 

■44, 
22N 4 

+ 
O 

420N 54T2 13N 156N2 

-13N -3 -22N 4 

~ 36N2 

(s2K2+1) 3N 4 
Sym. 

30 s2N2 -3GN8 -3N 3CN2 

_ 3H -l -3N 

166N2 

4 V2 
+ 22N 4 

Sym. 

420H4 541)2 13N ■ 156H2 

j^13N -3 -22N 
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and 

3n 
311 

3 21 

-T ' 
S21 

=*22 

where 

B11 = S21 

~36N2 
- Sym. 

3N h 
522 = -36N2 

/ 

-3N 361T2 

3N -1 -3N 4 

I i 

(9.15) 

" #* 

■' ' 1 i,' m • ■ : 

(9.16) 

Following the procedure outlined in Chapters III and V, 
I 

the equations of motion for the discretizod system can now be ob- 
• i 

tained from Eq.(9.10) as follows: 

E - A 2 sNJ [ QNJ = A [ ] [ On J (9.17) 

where the non-dimensional parameters A2 and $)\ are given by 

Eqs.(3.47) and (3.48). 

In a similar way the equations of equilibrium for the 

totally assembled beam can be obtained as: 

fic-A i 1 [ 31 = ^ l raj [ Q ] (9.18) 

whdre k, s, m and Q denote the totally assembled matrices corres¬ 

ponding to the element matrices k^, sN, mN and Qjj defined previ¬ 

ously. 
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9• 5. RESULTS AUD CONCLUSION ; 

~ for the first and second sets of values of \ 2 for 

various^of the axial load parameter A and foundation parameter^ 

for simply supported beams for values of K = 1.541, g = 0.046 

and d = 0.023, are obtained on IBM 1130 Computer at Andhra Uni¬ 

versity, Waltair and are presented in Tables 9.1 and 9.2. 

In the case of the first set of frequencies, the values of 

/\ obtained for the first four modes of vibration, for various 

values of V and A , for a division of the beam into IT = 2 and 3 

segments are shown in Table 9.1 and are compared with the exact 

results obtained using the analysis presented in Chapter VIII. 

For, the second set, the values of X obtained for the first four 

modes of vibration for R = 2 and 3 are shown in Table 9.2 and 

are compared with exact results. The exact results for the 

first and second sets were obtained using Eq.(8.45). 

From Tables 9.1 and 9.2, it can be observed that, for all 

cases, the results obtained by finite element method even for 

very coarse subdivisions of the beam, are in excellent agreement 

with the exact ones. As stiffness and mass matrices including 

shear deformation and longitudinal inertia in addition to axial 

load and elastic foundation, involve double the number of deg¬ 

rees of freedom than those that exist if the secondary effects cu 

negled^twlce as many natural frequencies result. In tables 

9.1 and 9.2 the lower and higher spectrum of frequencies of simp] 

supported beam are respectively listed. The second set of freque 

cies can also be observed to be in excellent agreement with the 
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exact ones* In Chapters IV and VIII these second set of fre¬ 

quencies are discussed in detail. 

As mentioned previously, results for other boundary con¬ 

ditions can be easily obtained using the above stiffness and 

mass matrices with suitable changes in the Computer program and 

the data. The advantage of using the finite element method is 

that a beam with non-uniform section can also be analyzed by 

deviding the beam into a number of segments and assuming each 

segment has a constant cross section. This method provides us 

with an upper bound to the exact frequencies of the system and 

is quite general, satisfactorily encompassing all boundary con¬ 

ditions. 
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CHAPTER - X 

rar-LUTEAR TORSIONAL STABILITY OF LENSTHY THPT-WAT,T,Tm BEms 

OP OPEN section resting pit continuous elastic foundation* 

10.1. INTRODUCTION: 

. 

It ig not uncommon, in structural design, to regard the ' 

elastic Duckling load of a slender structural member as its failure 

load, and to pay little attention to its post-buckling behaviour. 

However, some structural members, such as simply supported thin 

Plates loaded in compression, can support loads significantly grea¬ 

ter than their elastic critical loads without deflecting excessively. 

This reserve of strength after buckling is due mainly to a redis¬ 

tribution of stress from the more flexible central area of the 

plate to the unloaded-edge regions ( >2>. ). On the other hand, the 

load carrying capacity of some thin shell structures reduces rapidly 

after buckling. Such a structure is extremely sensitive to imper¬ 

fections and disturbances, and may deform excessively at loads 

much less than its elastic critical load ( 4-*"). Clearly, the 

post buckling behaviour of a structural member may have a decisive 

influence on the relation between its buckling and ultimate stren¬ 

gths . 

The classical linear buckling theories ( °! °i) for elas¬ 

tic beams and columns necessarily predict buckling at loads that 

■ ’ 

M 
MI 
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remain constant as the buckling amplitudes increase. Euler ( ) 

first investigated the elastic flexural post-buckling behaviour of 

columns in 1744, by using the exact expression for curvature in¬ 

stead of the familiar small deflection approximation. This'resul¬ 

ted in a post-buckling curve that rises so slowly that there is no 

significant increase in the load-carrying capacity until the defor¬ 

mations become gross. 

The non-linear behaviour of members in uniform torsion was 

first investigated by Young {) o2.) who considered circular cross 

sections. A related problem, the torsional stiffness of narrow 

rectangular sections under uniform axial tension, was examined by 

Buckley ( I 4- ) and Weber ( 1 °2-) investigated the non-linear beha¬ 

viour of narrow rectangular strips in pure torsion. Later, Culli- 

more (oil ) studied the behaviour of thin-walled I and Z sections. 

Weber and Cullimore showed that the torsional stiffness increases 

with the twist, and that this is due to a system of stresses act¬ 

ing along the helical fibres of the twisted member. The stress 

system is self equilibrating so that the outer fibres are in ten¬ 

sion and the fibres olonor to the twist axis aro in compare os ion. 

Although Cullimore correctly derived the result for nar¬ 

row rectangular members his expression for the non-linear torque 

component for I and Z sections is in doubt, because he used a 

constant lever arm, to obtain the torque contributed by the flange, 

instead of a variable lever arm, which is the distance from the 

twist axis to any point on the flange. Furthermore, his assump¬ 

tion of very thin walls leads to some inaccuracies when applied 
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to the I and Z sections in common use. A more accurate theory of 

non-linear non-uniform torsion of thin-walled beams of open section 

is presented by Tso and Ghobarah ( /os') using the principle of mini¬ 

mum potential energy. Their theory takes into account the effect 

of large torsional deformation and allows very general loading and 

boundary conditions. 

It can be seen that there is a surprising pauo.ity of work 

on the olnotio torsional post-buokling behaviour of doubly symme¬ 

tric booms, in comparison with the extensive work on other struc¬ 

tures ( ). in particular, the behaviour of simply-supported and 

clamped beams and of I-section members resting on Continuous elas¬ 

tic foundation has not been investigated. The purpose of the pre¬ 

sent Chapter, then, is to study theoretically the elastical tor¬ 

sional post-buckling behaviour of statically determinate beams of 

I-section resting on continuous Winkler type elastic foundation. 

1CV2* PBVELOHJBIJT OP GOVERimiG DIFFERENTIAL EQUATION AflD BOUNDARY 

CONDITIONS: 

Consider a thin-walled beam of doubly-symmetric open cross 

section subject to axial compressive load. The relationship bet¬ 

ween the total torque Tt and the corresponding angle of twist 0 in 

pure elastic torsion of a uniform thin-walled beam is given by 

Saint-Venant as: 

GC ^ 
s dz (10.1) 

In the case of non-uniform torsion, Eq.(lO.l) is extended 

for the warping of the cross-sections of the beam: and 

to allow 
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GC 4^ - EC s dz w (10.2) 

The above Eq.(l0.2) gives reasonable results for angles of twist 

^approximately no greater than 5°, 

Experimental results obtained by Goodier (38') from tests 

have shown good qualitative, but poor quantitative, agreement with 

the theoretical conclusions from Eq.(l0.2). If one examines the 

work of Weber ( Gregory ( *4 ), Terrington ( ^T) and Tso 

and Ghobarah (/os), it can be seen that Eq.(l0.2) is not complete 

insofar as there is a further torque component term to be consi¬ 

dered. This term is due to the Shortening effect* arising from 

torsion, described by Weber ( /oi) and allowed for by Gregory (4*2.) 

and, Tso and Ghobarah (/os'). Allowing for this component of tor¬ 

que, Eq.(l0.2), becomes 

GO M 
s dz 

EC 
w + 2EP (10.3) 

where Ms a constant dependent on cross sectional properties and 

is defined by 

* S V (IPC/A)2 (10.4) 

in which I is half the polar moment of inertia about the shear 

center and the fourth moment of inertia about the Bhear center. 

In the case of a thin-walled doubly symmetric I-beam of 
■ ■ 

flange and web thicknesses t^ and t respectively; height between 

the centerlines of the flanges h, flange width bj,and flange and 
™ \ i 

web thicknesses being assumed as small compared with height h, i.e. 
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<< h, and tw << h, the geometric properties in Eq.(l0.4) 

be evaluated as follows (/o*T): 

can 

_ IV + llh + \5‘f + 
#. 320 + 32 + ~160 + 48 

and 

Sc = (l/24) (h3V 2b|y 6^h2tf) 

(10.5) 

(10.6) 

<ff\ ^ 
For a beam resting^ontinuous Winkler type elastic foundation and 

subjected to an axial compressive load P, we have 

dTt ^p <0 
0T = -f - dz2 + Kt 0 (10.7) 

Substituting Eq.(l0.3) in Eq.(l0.7) the governing non-linear dif¬ 

ferential equation can be obtained as 

A ' 

EC - 6EF(^)2 d^ frn v . 
w dz4 W A _2 " (GCs~ ~A 7a+Kt ^ = 0 (10.8) 

.8 ^2 

dz 3 A ' dz2 ' “t 

The boundary conditions associate with this problem are as follows; 

(Q) Simply supported enrl; 

r 0-0 and = 0 
dz2 

(10.9) 

(b) Clamped end: 
„ \ 

0 a 0 and 

(o) Free end: 

^ = 0 

df = ° (10.10) 

dz* 

and 

•Vi*3 

—--- ■ ■ ■ ■■■■!' 
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EC„ £§ - 2EF(f|)3- (G0S- f| - 0 

The general solution of Eq.(l0.8) can be obtained by nu¬ 

merical methods using computer techniques. However, for the pur¬ 

pose of this thesis, approximate solutions are obtained for simply 

supported and clamped beams using Galerkin's method. 

10.3. SIMPLY SUPPORTED BEAM: 

For a beam simply supported at both ends, the boundary 

conditions are: 

(10.12) 
and 

1 

0—0 and 0''= 0 at Z = 1 (10.13) 

where primes denote differentiation with respect to the dimension¬ 

less length Z = z/L. 
• , ' j * 

Eq.(lO.S) can be written in non-dimensional form as: 

(10.14) 

where 

% = p/c 
(10.15) w { 

To solve Eq.(10.14) by Galerkin's method, the angle of 

twist 0(z) is assumed to be of the form 

0(Z) = P*X(z) (10.16) 

where P is the torsional amplitude nndX is a function of Z. Since 

X will be an approximate function a33Uined to satisfy the boundary 



280 

conditions, by substituting Eq.(lO.16) in Eq.(l0.l4), 

G will be obtained as: 

an error 

S =» (3 ?C - 6 ft ) X." - (KS- A2) X." + 42? ZX. (10.17) 

For minimizing the error £ the Galerkin's Integral (7^) is 

/ 

1 
/ e X dz = 0 (10.18) ' 

To satisfy the boundary conditions, Eqs.(l0.12) and (10.13), 
we assume 

X (z) = Sin n Z 
(10.19) 

Substituting Bqs.(10.17) and (10.19) into Eq.dO.is), we 

obtain the expression for the torsional post-buckling load for a 

simply supported beam as: 

cr = K2+ n2 + 4 V 2/t£ .+ (3/2) n2 6 ft (10.20) 

The corresponding linear torsionaibuckling load is given by (See 

(Eq.2.88) 

Acr = K2 + Ti2 + 4>)2/Tt2 (10.21) 

Hence, the ratio of the non-linear buckling load to linear 

buckling load is given by 

Pr Cji, 

A 

A 
§£ = 1 -u—(g/2)^4 6 ^ 

or 
(k2(K2+ u2) + 4 92] (10.22) 

In the absence of elastic foundation, i.e., V = 0, Eq.(l0.22) 



reduces to 

C A- 

<A*2 
cr 

a 2 
cr 

57I2 % g2 

2(K2-Hi2) 
1 + 

(10.23) 

10-4. CLAMPED BTCAM; 

ihe boundary conditions for a beam clamped at both the 

ends are: 

and 

0 = 0 and 0' = 0 at Z = 0 

0=0 and 0' = 0 at Z = 1 

(10.24) 

(10.25) 

To satisfy the above conditions, the function LC(Z) can be 

assumed as: 

•;/li 

5C(Z) = j3* (l-Cos 27tz) 
(10.26) 

Substituting Eqs.(l0.17) and (10.26) into Eq.(l0.18) we 

obtain the expression for the torsional poet-buckling load for a 

dapped beam as: 

A cr = K2 + 4u2 + 3 ^2/7i2 +6 %2 % (P 
(10.27) 

The corresponding linear torsional buckling load for a 

clamped beam is (See Eq.2.74) 

^ cr = K2 + 4k2 + 3>> 2/k2 
(10.28) 

Hence, the ratio of the non-linear buckling load to linear 

buckling load is given by 
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In the 

reduces to 

' i . 

-21 
.2 
& or 

1 + 

A * # 2 
6w46 p (10.29) 

[n8(K844Tte)+ 3^2J 

absence of elastic foundation, ie., ^ = 0, Eg.(10.29) 

or 

-2£ = 
2 
or 

1 + 61W 

K8+ 4n8 
(10.30) 

—uaaaa 


